Grupo - Lennard Jones: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 81: Linha 81:
=== Truncamento nas interações ===
=== Truncamento nas interações ===


Um problema da condição de contorno periódica é que, a princípio, cada partícula interagiria com todas as outras do sistema, que devido ao fato de ser periodicamente repetido, seriam infinitas. Como o potencial utilizado é de curto alcance, deve ser possível, de alguma forma, limitar as interações entre as partículas sem perda dos significados numéricos da simulação. Pode-se, truncar as interações a partir de uma distância <math> r_c </math>.
Um problema da condição de contorno periódica é que, a princípio, cada partícula interagiria com todas as outras do sistema, que devido ao fato de ser periodicamente repetido, seriam infinitas. Como o potencial utilizado é de curto alcance, deve ser possível, de alguma forma, limitar as interações entre as partículas sem perda dos significados numéricos da simulação. Pode-se, truncar as interações de uma partícula <math> i </math> a partir de uma distância <math> r_c </math> de forma que há uma descontinuidade no potencial dessa partícula no círculo de raio <math> r_c </math>. Assim o potencial simulado é
 
<math> u_{trunc}(r) = \begin{cases}u_{LJ}(r) & r \leq r_c\\0 & r > r_c 0\end{cases}  </math>
 
 
 
Esse é o chamado truncamento simples. O problema é que isso cria uma contribuição à pressão, já que há uma força por conta dessa descontinuidade do potencial. Para evitar isso, pode-se usar o truncamento com deslocamento


=== Translação ===
=== Translação ===

Edição das 18h32min de 14 de janeiro de 2018

O potencial devido a interação entre duas partículas separadas por uma distância pode ser modelado pelo potencial de Lennard Jones:

Posto em unidades reduzidas ( e ), o potencial reduz-se a:

Trabalha-se, por conveniência, com o seguintes sistema de unidades básicas:

Grandeza Comprimento Tempo Massa Temperatura Energia Pressão Densidade
Unidade

onde é a massa da partícula e é a constante de Boltzmann.

Método Monte Carlo

Denomina-se método de Monte Carlo métodos estatísticos que se baseiam em amostragem aleatória massiva para cálculo numérico.

Amostragem simples

Pode-se querer calcular uma integral numericamente utilizando Monte Carlo. Uma forma de fazer isso parte de que uma integral pode ser reescrita como

Dessa forma, utiliza-se amostragem aleatória massiva para estimar , que é a média da função no intervalo de interesse.

Amostragem por importância

Um problema da amostragem simples é que ela utiliza uma distribuição uniforme, que pode, pra uma função que decaia rapidamente a zero, demorar muito a estimar corretamente o valor médio da função. Porém, podemos utilizar uma distribuição que tenha um formato semelhante à função que queremos integrar, reescrevendo a integral


Algoritmo de Metropolis

Dado uma amostra com partículas, a abordagem introduzida por Metropolis segue o seguinte esquema:

(1) Selecionar uma partícula aleatóriamente, e calcular sua energia ;
(2) Dado o deslocamento , calcular ;
(3) Aceitar o movimento  com probabilidade 

Estimadores no Equilíbrio

Em todos os exemplos tratados aqui, será usado o ensemble NVT (com o número de partículas, volume e temperatura constantes). Dado isso, os sistemas são caracterizados com um densidade e uma temperatura. Com tais sistema no equilíbrio, são estimadas (média de sucessivas medidas) a energia total e a pressão, dadas respectivamente por




onde . Além disso, é interessante a análise da capacidade térmica


Detalhes Técnicos

Condições de Contorno

Qualquer sistema possível de ser feito hoje com método Monte Carlo, apesar do grande poder computacional disponível, fica distante do limite termodinâmico. As condições de contorno podem ser estabelecidas de forma a tentar driblar isso. As condições utilizadas neste trabalho foram condições de contorno periódicas, que permitem uma simulação de preenchimento, e funciona bem para sistemas isotrópicos.

Truncamento nas interações

Um problema da condição de contorno periódica é que, a princípio, cada partícula interagiria com todas as outras do sistema, que devido ao fato de ser periodicamente repetido, seriam infinitas. Como o potencial utilizado é de curto alcance, deve ser possível, de alguma forma, limitar as interações entre as partículas sem perda dos significados numéricos da simulação. Pode-se, truncar as interações de uma partícula a partir de uma distância de forma que há uma descontinuidade no potencial dessa partícula no círculo de raio . Assim o potencial simulado é


Esse é o chamado truncamento simples. O problema é que isso cria uma contribuição à pressão, já que há uma força por conta dessa descontinuidade do potencial. Para evitar isso, pode-se usar o truncamento com deslocamento

Translação

Diagramas de fase

Dado um sistema com densidade e temperatura , os diagramas foram feitos com:

(A)  partículas;
(B) Cubo de lado  com condições de contorno periódicas;
(C) Incialização aleatória;
(D) Distância de corte ;
(E) Deslocamento .

T = 2.0 (acima do valor crítico)

T 20 P.png T 20 C.png

Nessa situação (acima do valor crítico de temperatura), o gráfico pressão - densidade (esquerda) mostra sua injetividade, e por tanto, a não coexistência de fases (como esperado). O gráfico capacidade térmica - densidade (direita) é monotonicamente crescente, por consequência.

T = 0.9 (abaixo do valor crítico)

T 09 P.png T 09 C.png

Nessa situação (abaixo do valor crítico de temperatura), o gráfico pressão - densidade (esquerda) mostra sua não-injetividade, e por tanto, a coexistência de fases líquido-vapor, apresentando metaestabilidade com pressões negativas na região. Esse efeito é devido ao tamanho pequeno da amostra, que tem um alto custo de energia livre para a criação de uma interface de vapor de líquido, por isso se torna pouco aconselhavel utilisar o ensemble NVT para diagramas de conexistência de fases.

Referências