Equação de Klein-Gordon: mudanças entre as edições
Sem resumo de edição |
|||
Linha 13: | Linha 13: | ||
<math> \frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2\psi}{\partial x^2} - \frac{m^2 c^4}{\hbar^2} \psi</math> (em uma dimensão) | <math> \frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2\psi}{\partial x^2} - \frac{m^2 c^4}{\hbar^2} \psi</math> (em uma dimensão) | ||
Inicialmente, a equação pode ser interpretada como uma equação de um campo escalar que pode ser quantizado, onde é introduzido um campo quantico que é descrito por partículas sem spin. No reino da física de partículas, as interações eletromagnéticas podem ser incorporadas formando o tópico da eletrodinâmica escalar, por exemplo. Entretando, a solução da equação não pode ser interpretada diretamente como a densidade de probabilidade vista na equação de Schrodinger, em vez disso, a densidade de probabilidade relativística é definida usando uma corrente de probabilidade associada. Na mecânica quântica relativística, a função de onda <math> \psi(x,t) < | Inicialmente, a equação pode ser interpretada como uma equação de um campo escalar que pode ser quantizado, onde é introduzido um campo quantico que é descrito por partículas sem spin. No reino da física de partículas, as interações eletromagnéticas podem ser incorporadas formando o tópico da eletrodinâmica escalar, por exemplo. Entretando, a solução da equação não pode ser interpretada diretamente como a densidade de probabilidade vista na equação de Schrodinger, em vez disso, a densidade de probabilidade relativística é definida usando uma corrente de probabilidade associada. Na mecânica quântica relativística, a função de onda <math> \psi(x,t) </math> é usada para descrever o estado de uma partícula no espaço-tempo. | ||
== MÉTODO DAS DIFERENÇAS FINITAS == | == MÉTODO DAS DIFERENÇAS FINITAS == |
Edição das 12h12min de 8 de janeiro de 2025
INTRODUÇÃO
A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os bósons de Higgs) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:
onde é chamado operador de d'Alambert.
Abrindo a equação, é obtido:
(em uma dimensão)
Inicialmente, a equação pode ser interpretada como uma equação de um campo escalar que pode ser quantizado, onde é introduzido um campo quantico que é descrito por partículas sem spin. No reino da física de partículas, as interações eletromagnéticas podem ser incorporadas formando o tópico da eletrodinâmica escalar, por exemplo. Entretando, a solução da equação não pode ser interpretada diretamente como a densidade de probabilidade vista na equação de Schrodinger, em vez disso, a densidade de probabilidade relativística é definida usando uma corrente de probabilidade associada. Na mecânica quântica relativística, a função de onda é usada para descrever o estado de uma partícula no espaço-tempo.
MÉTODO DAS DIFERENÇAS FINITAS
O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos criando uma sequência de pontos . Para uma equação no espaço você discretiza o espaço em intervalos criando uma sequência de pontos . Depois de discretizar o espaço e o tempo, as derivadas contínuas são aproximadas por diferenças finitas. Isso envolve substituir as derivadas por aproximações baseadas nos valores de uma função nos pontos discretos:
e para o tempo.
para o espaço.
Na equação de Klein-Gordon, escrevemos desta o método das diferenças finitas:
ou seja:
isso nos leva a equação final:
chamarei e
portanto,
ou, mais usualmente:
CRITÉRIO DE ESTABILIDADE
Forma Contínua e Discretização: A equação de Klein-Gordon contínua é:
A forma discreta, usando diferenças finitas centralizadas no tempo e no espaço, é: Aqui, definimos os coeficientes:
Suposição de Solução Harmônica: Substituímos uma solução da forma: onde:
na equação:
Simplificação:
Como e , o termo centralizado se torna: Usando , temos: Substituímos isso na equação e cancelamos o fator , que nunca é zero:
Simplificando mais, obtemos:
Equação Característica: Assumimos uma solução na forma de uma equação quadrática :
Condição de Estabilidade: Para estabilidade, as raízes de devem satisfazer . Isso leva ao critério:
Conclusão Matemática: A condição garante que os termos oscilatórios na solução não crescem exponencialmente. Essa análise também mostra que:
Quanto menor o passo de tempo , mais precisa e estável é a solução. A relação entre os passos de tempo e espaço é crucial: aumentar muito sem ajustar pode levar à instabilidade.
C.C e C.I
Condições iniciais e condições de contorno são fundamentais para a resolução da equação, já que elas ditam o comportamento da função oa longo do tempo e ao longo do espaço, para plotar a evolução temporal, utilizarei as seguintes condições iniciais e de contorno:
que define um pulso gaussiano como condição inicial.
e que define que, no instante de tempo t=0, a função não possui velocidade inicial, o que implica que o pulso está parado inicialmente e sua evolução se deve pela propagação de flutuações espaciais.
Nesta condição, A é a altura do pulso, é a posição central do pulso e é a largura do pulso.
Utilizarei também as condições de contorno em que e o que garante que a função 'morra' nas pontas.
Utilizando estas condições iniciais e condições de contorno, foi feito um gif que mostra a evolução temporal da equação de Klein-Gordon utilizando o método das diferenças finitas:
Localização Inicial: No gráfico mostrado, tem um pico bem definido, o que sugere que a partícula está localizada inicialmente em torno de um ponto central no espaço. Isso significa que a probabilidade da partícula estar presente é maior nessa região (em torno do pico), e diminui nas bordas. No gráfico mostrado acima, tem um pico bem definido, o que sugere que a partícula está localizada inicialmente em torno de um ponto central no espaço. Isso significa que a probabilidade da partícula estar presente é maior nessa região (em torno do pico), e diminui nas bordas.