Equação de Klein-Gordon: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 135: Linha 135:




Forma Contínua e Discretização: A equação de Klein-Gordon contínua é: <math> \frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2 \psi}{\partial x^2} - \frac{m^2 c^4}{\hbar^2} \psi. </math>
A Forma Contínua e Eiscretização da equação de Klein-Gordon contínua é: <math> \frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2 \psi}{\partial x^2} - \frac{m^2 c^4}{\hbar^2} \psi. </math>


A forma discreta, usando diferenças finitas centralizadas no tempo e no espaço, é: <math> \psi_i^{n+1} = 2 \psi_i^n - \psi_i^{n-1} + \frac{c^2 \Delta t^2}{\Delta x^2} (\psi_{i+1}^n - 2 \psi_i^n + \psi_{i-1}^n) - \frac{m^2 c^4 \Delta t^2}{\hbar^2} \psi_i^n. </math> Aqui, definimos os coeficientes: <math> \alpha = \frac{c \Delta t}{\Delta x}, \quad \beta = \frac{m c^2 \Delta t}{\hbar}. </math>
A forma discreta, usando diferenças finitas centralizadas no tempo e no espaço, é: <math> \psi_i^{n+1} = 2 \psi_i^n - \psi_i^{n-1} + \frac{c^2 \Delta t^2}{\Delta x^2} (\psi_{i+1}^n - 2 \psi_i^n + \psi_{i-1}^n) - \frac{m^2 c^4 \Delta t^2}{\hbar^2} \psi_i^n. </math> Aqui, definimos os coeficientes: <math> \alpha = \frac{c \Delta t}{\Delta x}, \quad \beta = \frac{m c^2 \Delta t}{\hbar}. </math>

Edição das 21h25min de 7 de janeiro de 2025

INTRODUÇÃO

A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:


onde é chamado operador de d'Alambert.

Abrindo a equação, é obtido:

(em uma dimensão)

MÉTODO DAS DIFERENÇAS FINITAS

O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos criando uma sequência de pontos . Para uma equação no espaço você discretiza o espaço em intervalos criando uma sequência de pontos . Depois de discretizar o espaço e o tempo, as derivadas contínuas são aproximadas por diferenças finitas. Isso envolve substituir as derivadas por aproximações baseadas nos valores de uma função nos pontos discretos:

e para o tempo.

para o espaço.

Na equação de Klein-Gordon, escrevemos desta o método das diferenças finitas:

ou seja:

isso nos leva a equação final:

chamarei e

portanto,

ou, mais usualmente:

ESTABILIDADE ta errado, estou testando outras coisas

Para analisar a estabilidade do método utilizaremos os Modos de Furrier.

.


sendo o Modo de Furrier.


Substituímos , e na equação:

Usamos a identidade :

Fatoramos:

A relação de recorrência é:

onde

.

Definimos como sendo o fator de amplificação. Assim, a equação fica

Dividindo tudo por  :

Portanto, a equação característica associada é:

onde são as raízes que representam o fator de amplificação .

Para que o método seja estável, as raízes devem satisfazer . Isso é garantido se o discriminante da equação característica satisfizer:

.

Substituímos :

.

O caso crítico ocorre para o maior valor de , que é , e o menor valor, :

:

.

Isso simplifica para:

Para estabilidade:

.

.

Para :

.

.

Ou seja, para que seja estável:

.

Após expandir:

.

A condição de estabilidade combinada é:

e .

Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método.



CRITÉRIO DE ESTABILIDADE

A Forma Contínua e Eiscretização da equação de Klein-Gordon contínua é:

A forma discreta, usando diferenças finitas centralizadas no tempo e no espaço, é: Aqui, definimos os coeficientes:

Suposição de Solução Harmônica: Substituímos uma solução da forma: onde:

 na equação: 

Simplificação:

Como e , o termo centralizado se torna: Usando , temos: Substituímos isso na equação e cancelamos o fator , que nunca é zero:

Simplificando mais, obtemos:

Equação Característica: Assumimos uma solução da forma e obtemos uma equação quadrática para :

Condição de Estabilidade: Para estabilidade, as raízes de devem satisfazer . Isso leva ao critério:

Conclusão Matemática A condição garante que os termos oscilatórios na solução não crescem exponencialmente. Essa análise também mostra que:

Quanto menor o passo de tempo , mais precisa e estável é a solução. A relação entre os passos de tempo e espaço é crucial: aumentar muito sem ajustar pode levar à instabilidade.

C.C e C.I

Condições iniciais e condições de contorno são fundamentais para a resolução da equação, já que elas ditam o comportamento da função oa longo do tempo e ao longo do espaço, para plotar a evolução temporal, utilizarei as seguintes condilções iniciais e de contorno:

que define um pulso gaussiano como condição inicial.

e que define que, no instante de tempo t=0, a função não possui velocidade inicial, o que implica que o pulso está parado inicialmente e sua evolução se deve pela propagação de flutuações espaciais.

Nesta condição, A é a altura do pulso, é a posição central do pulso e é a largura do pulso.

Utilizarei também as condições de contorno em que e o que garante que a função 'morra' nas pontas.

Utilizando estas condições iniciais e condições de contorno, foi feito um gif que mostra a evolução temporal da equação de Klein-Gordon utilizando o método das diferenças finitas:

Klein 2.gif