Equação de Klein-Gordon: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 124: Linha 124:
A condição de estabilidade combinada é:
A condição de estabilidade combinada é:


<math> \alpha \geq -\frac{\beta}{2} </math> e  <math> \beta \geq 2  </math>.
<math> \alpha \geq -\frac{\beta}{2} </math>  
e  <math> \beta \geq 2  </math> .


Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método.
Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método.

Edição das 10h19min de 7 de janeiro de 2025

INTRODUÇÃO

A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:


onde é chamado operador de d'Alambert.

Abrindo a equação, é obtido:

(em uma dimensão)

MÉTODO DAS DIFERENÇAS FINITAS

O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos criando uma sequência de pontos . Para uma equação no espaço você discretiza o espaço em intervalos criando uma sequência de pontos . Depois de discretizar o espaço e o tempo, as derivadas contínuas são aproximadas por diferenças finitas. Isso envolve substituir as derivadas por aproximações baseadas nos valores de uma função nos pontos discretos:

e para o tempo.

para o espaço.

Na equação de Klein-Gordon, escrevemos desta o método das diferenças finitas:

ou seja:

isso nos leva a equação final:

chamarei e

portanto,

ou, mais usualmente:

ESTABILIDADE

Para analisar a estabilidade do método utilizaremos os Modos de Furrier.

.


sendo o Modo de Furrier.


Substituímos , e na equação:

Usamos a identidade :

Fatoramos:

A relação de recorrência é:

onde

.

Definimos como sendo o fator de amplificação. Assim, a equação fica

Dividindo tudo por  :

Portanto, a equação característica associada é:

onde são as raízes que representam o fator de amplificação .

Para que o método seja estável, as raízes devem satisfazer . Isso é garantido se o discriminante da equação característica satisfizer:

.

Substituímos :

.

O caso crítico ocorre para o maior valor de , que é , e o menor valor, :

:

.

Isso simplifica para:

Para estabilidade:

.

.

Para :

.

.

Ou seja, para que seja estável:

.

Após expandir:

.

A condição de estabilidade combinada é:

e .

Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método.

C.C e C.I

Condições iniciais e condições de contorno são fundamentais para a resolução da equação, já que elas ditam o comportamento da função oa longo do tempo e ao longo do espaço, para plotar a evolução temporal, utilizarei as seguintes condilções iniciais e de contorno:

que define um pulso gaussiano como condição inicial.

e que define que, no instante de tempo t=0, a função não possui velocidade inicial, o que implica que o pulso está parado inicialmente e sua evolução se deve pela propagação de flutuações espaciais.

Nesta condição, A é a altura do pulso, é a posição central do pulso e é a largura do pulso.

Utilizarei também as condições de contorno em que e o que garante que a função 'morra' nas pontas.

Utilizando estas condições iniciais e condições de contorno, foi feito um gif que mostra a evolução temporal da equação de Klein-Gordon utilizando o método das diferenças finitas:

Klein 2.gif