Equação de Klein-Gordon: mudanças entre as edições
Sem resumo de edição |
|||
| Linha 43: | Linha 43: | ||
== ESTABILIDADE == | == ESTABILIDADE == | ||
Para analisar a estabilidade do método, utilizamos os Modos de Fourrier: <math>\psi_i^n=A^n e^{iki\Delta x} </math> | |||
Edição das 19h41min de 5 de janeiro de 2025
INTRODUÇÃO
A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:
onde é chamado operador de d'Alambert.
Abrindo a equação, é obtido:
(em uma dimensão)
MÉTODO DAS DIFERENÇAS FINITAS
O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos criando uma sequência de pontos . Para uma equação no espaço você discretiza o espaço em intervalos criando uma sequência de pontos . Depois de discretizar o espaço e o tempo, as derivadas contínuas são aproximadas por diferenças finitas. Isso envolve substituir as derivadas por aproximações baseadas nos valores de uma função nos pontos discretos:
e para o tempo.
para o espaço.
Na equação de Klein-Gordon, escrevemos desta o método das diferenças finitas:
ou seja:
isso nos leva a equação final:
chamarei e
portanto, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t) =\alpha^2 \psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x,t-\Delta t) - \beta^2 \psi }
ou, mais usualmente: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_i^{n+1} = 2\psi_i^n - \psi_i^{n-1} + \alpha^2 ( \psi_{i+1}^n - 2\psi_i^n + \psi_{i-1}^n) - \beta^2 \psi }
ESTABILIDADE
Para analisar a estabilidade do método, utilizamos os Modos de Fourrier: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_i^n=A^n e^{iki\Delta x} }