Equação de Klein-Gordon: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 15: Linha 15:
== MÉTODO DAS DIFERENÇAS FINITAS ==
== MÉTODO DAS DIFERENÇAS FINITAS ==


O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço.  Para uma equação no tempo você discretiza o tempo em intervalos <math>\Delta t </math> criando uma sequência de pontos <math>t_n=n\Delta t </math>.
O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço.  Para uma equação no tempo você discretiza o tempo em intervalos <math>\Delta t </math> criando uma sequência de pontos <math>t_n=n\Delta t </math>. Para uma equação no espaço você discretiza o espaço em intervalos <math>\Delta x </math> criando uma sequência de pontos <math>t_i=n\Delta x </math>.





Edição das 17h15min de 5 de janeiro de 2025

INTRODUÇÃO

A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=p^2c^2 + m^2c^4 } . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \Box + \frac{m^2 c^2}{\hbar^2} \right) \psi(x,t)= 0 }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \Box = \frac{\partial^2}{c^2\partial t^2} -\nabla^2 \right) } é chamado operador de d'Alambert.

Abrindo a equação, é obtido:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 \psi}{\partial t^2} = c^2 \nabla^2 \psi - \frac{m^2 c^4}{\hbar^2} \psi}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2\psi}{\partial x^2} - \frac{m^2 c^4}{\hbar^2} \psi} (em uma dimensão)

MÉTODO DAS DIFERENÇAS FINITAS

O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta t } criando uma sequência de pontos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_n=n\Delta t } . Para uma equação no espaço você discretiza o espaço em intervalos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x } criando uma sequência de pontos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_i=n\Delta x } .


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 \psi(x,t)}{\partial t^2} \approx \frac{\psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t)}{(\Delta t)^2}}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 \psi(x,t)}{\partial x^2} \approx \frac{\psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x,-\Delta,t)}{(\Delta x)^2} }

ou seja:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t)}{(\Delta t)^2} = c^2 \frac{\psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x,-\Delta,t)}{(\Delta x)^2} - \frac{m^2 c^4}{\hbar^2} \psi }

isso nos leva a equação final:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t) =\frac{c^2 \Delta t^2}{\Delta x^2} \psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x,-\Delta,t) - \frac{m^2 c^4 \Delta t^2}{\hbar^2} \psi }

chamarei Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{c \Delta t}{\Delta x} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \frac{m c^2 \Delta t}{\hbar} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t) =\alpha^2 \psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x,-\Delta,t) - \beta^2 \psi }