Equação de Lotka-Volterra Competitiva Estocástica: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 78: | Linha 78: | ||
</center> | </center> | ||
Agora, tomando a integral, ficamos com a aproximação | Essa troca se justifica pelo fato de estarmos trocando o argumento de B pela média entre os valores de X no início e no fim do intervalo de integração, correspondendo a uma melhor estimação. Agora, tomando a integral, ficamos com a aproximação | ||
<center> | <center> | ||
Linha 101: | Linha 101: | ||
</math> | </math> | ||
</center> | </center> | ||
=== Resultados === | |||
== Equações para Três Populações == | == Equações para Três Populações == | ||
Os métodos de resolução numérica para três populações são completamente análogos aos métodos para duas populações; portanto, a matemática envolvida será omitida a partir de agora e somente serão discutidos os resultados. O conjunto de equações utilizado para três espécies distintas é | |||
<center> | <center> |
Edição das 08h35min de 27 de agosto de 2024
Introdução
As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade, juntamente da adição de um termo estocástico multiplicativo. Dividiremos, para tanto, o trabalho em três partes principais, considerando duas e três populações, mostrando os gráficos de evolução temporal do número de indivíduos de cada espécie e os espaços de fase, e generalizando para N populações. Em todas as etapas serão mostrados os resultados considerando e desconsiderando o ruído para fins comparativos.
Equações para Duas Populações
Como uma primeira análise, considerando somente duas populações distintas, vamos explorar o modelo logístico, partindo das Equações de Lotka-Volterra, de duas espécies disputando um território, que pode ser descrito pelo seguinte par de relações:
Nesse par, e representam as duas populações consideradas; e indicam o crescimento inerente per-capita, a capacidade de uma espécie em se reproduzir; e retratam a capacidade de carga, o número de indivíduos limite que o meio ambiente consegue suportar considerando o nicho ecológico ao que a espécie pertence; e e , o efeito que a espécie um tem na espécie dois e vice-versa.
Para a adição de ruído ao sistema, vamos supor que o termo estocástico seja incorporado em cada equação de maneira a afetar somente a população ou a população , ou seja, estamos considerando que o ruído atinja cada população de maneira proporcional a sua quantidade de indivíduos em determinado período de tempo. Como um exemplo prático, podemos pensar no termo estocástico como a presença de um agente externo que infecte uma das populações isoladamente. Claro que o efeito resultante de existir uma doença se espalhando na espécie afeta o crescimento da espécie , entretanto esse efeito não é direto, sendo uma consequência da correlação entre o par de equações.
Além disso, antes de de fato colocarmos o fator estocástico nas equações, precisamos de explicar qual o tipo de ruído a ser inserido. Para tanto, será introduzido o ruído branco, que é definido a partir de suas propriedades estatísticas que configuram sua média e sua função de correlação temporal, podendo ser expressas matematicamente por
A primeira relação indica que o ruído branco possui média igual a zero, enquanto que a segunda indica o fato de os ruídos considerando diferentes tempos são independentes e, sendo assim, dá o nome branco ao ruído, pois a intensidade espectral de um processo estocástico é a Transformada de Fourier da função de correlação, sendo ela constante por se tratar de uma Delta de Dirac, logo todas as frequências estão presentes com mesma intensidade, com branco fazendo uma analogia a essa característica.
Portanto, podemos reescrever as relações supracitadas considerando o ruído como
com e sendo as amplitudes dos ruídos e e os ruídos brancos.
Método da Integral de Itô
Para então resolvermos as equações numericamente, vamos recorrer ao cálculo diferencial estocástico. Iniciamos, para esse fim, tomando a forma de Langevin
Deveríamos, como próxima etapa, integrar ambos os lados da equação da seguinte forma
Como não podemos resolvê-la pelos métodos convencionais, pois torna a função não diferenciável apesar de ser contínua, utilizamos a relação
Essa troca se justifica pelo fato de estarmos trocando o argumento de B pela média entre os valores de X no início e no fim do intervalo de integração, correspondendo a uma melhor estimação. Agora, tomando a integral, ficamos com a aproximação
Por seguinte, expandimos B em série de Taylor, excluímos o termo de ordem maior que dt e fazemos a substituição por
Com isso, temos que a Equação de Itô é dada por
Resultados
Equações para Três Populações
Os métodos de resolução numérica para três populações são completamente análogos aos métodos para duas populações; portanto, a matemática envolvida será omitida a partir de agora e somente serão discutidos os resultados. O conjunto de equações utilizado para três espécies distintas é
Equações para N Populações
</source>