Equação de Lotka-Volterra Competitiva Estocástica: mudanças entre as edições
Ir para navegação
Ir para pesquisar
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. Dividiremos, para tanto, o trabalho em três partes principais, considerando duas e três populações, mostrando os gráficos de evolução temporal do número de indivíduos de cada espécie e os espaços de fase, e generalizando para N populações. | As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. Dividiremos, para tanto, o trabalho em três partes principais, considerando duas e três populações, mostrando os gráficos de evolução temporal do número de indivíduos de cada espécie e os espaços de fase, e generalizando para N populações. | ||
== Equação de Fokker-Planck == | |||
== Equações para Duas Populações == | == Equações para Duas Populações == | ||
Linha 12: | Linha 17: | ||
</center> | </center> | ||
com <math>x_1</math> e <math>x_2</math> sendo as duas populações consideradas, <math>r_1</math> e <math>r_2</math>, o crescimento inerente per-capita, <math>K_1</math> e <math>K_2</math>, a capacidade de carga e <math>\alpha_{12}</math> e <math>\alpha_{21}</math>, o efeito que a espécie um tem na espécie dois e vice-versa. | com <math>x_1</math> e <math>x_2</math> sendo as duas populações consideradas, <math>r_1</math> e <math>r_2</math>, o crescimento inerente per-capita, <math>K_1</math> e <math>K_2</math>, a capacidade de carga e <math>\alpha_{12}</math> e <math>\alpha_{21}</math>, o efeito que a espécie um tem na espécie dois e vice-versa. | ||
== Equações para Três Populações == | |||
== Equações para N Populações == |
Edição das 15h59min de 25 de agosto de 2024
As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. Dividiremos, para tanto, o trabalho em três partes principais, considerando duas e três populações, mostrando os gráficos de evolução temporal do número de indivíduos de cada espécie e os espaços de fase, e generalizando para N populações.
Equação de Fokker-Planck
Equações para Duas Populações
O modelo logístico utilizado para duas espécies disputando um território pode ser descrito pelo seguinte par de equações:
com e sendo as duas populações consideradas, e , o crescimento inerente per-capita, e , a capacidade de carga e e , o efeito que a espécie um tem na espécie dois e vice-versa.