Equação de Lotka-Volterra Competitiva Estocástica: mudanças entre as edições
Ir para navegação
Ir para pesquisar
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
== Equações de Lotka-Volterra == | == Equações de Lotka-Volterra == | ||
As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade | As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. O modelo logístico considerando dois competidores pode ser expresso pelo par de equações dado por | ||
<center> | <center> | ||
<math> | <math> | ||
\frac{dx_1}{dt} = r_1x_1(1 - (\frac{x_1 + \alpha_{12}x_2}{K_1})</math> | \frac{dx_1}{dt} = r_1x_1(1 - (\frac{x_1 + \alpha_{12}x_2}{K_1}))</math> | ||
</center> | </center> | ||
<center> | <center> |
Edição das 14h30min de 25 de agosto de 2024
Equações de Lotka-Volterra
As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. O modelo logístico considerando dois competidores pode ser expresso pelo par de equações dado por
com x sendo