Equação de Liouville-Bratu-Gelfand: mudanças entre as edições
Linha 21: | Linha 21: | ||
==Formas radialmente simétricas== | |||
Se o sistema a ser estudado for radialmente simétrico, então a equação em <math>n</math> dimensões torna-se | |||
:<math>\psi'' + \frac{n-1}{r}\psi' + \lambda e^\psi=0</math> | |||
onde <math>r</math> é a distância a partir da origem. Com as condições de contorno | |||
. | |||
:<math>\psi'(0)=0, \quad \psi(1) = 0</math> | |||
e para <math>\lambda\geq 0</math>, uma solução real existe apenas para <math>\lambda \in [0,\lambda_c]</math>, onde <math>\lambda_c</math> é o parâmetro crítico chamado de [[Teoria de Frank-Kamenetskii|'''parâmetro de Frank-Kamenetskii''']]. O parâmetro crítico é <math>\lambda_c=0.8785</math> para <math>n=1</math>, <math>\lambda_c=2</math> para <math>n=2</math> e <math>\lambda_c=3.32</math> para <math>n=3</math>. Para <math>n=1, \ 2</math>, existem duas soluções e para <math>3\leq n\leq 9</math> existem infinitas soluções com as soluções oscilando em torno do ponto <math>\lambda=2(n-2)</math>. Para <math>n\geq 10</math>, a solução é única e, nesses casos, o parâmetro crítico é dado por <math>\lambda_c=2(n-2)</math>. A multiplicidade de soluções para <math>n=3</math> foi descoberta por [[Israel Gelfand]] em 1963 e, posteriormente, em 1973, generalizada para todos os <math>n</math> por [[Daniel D. Joseph]] e [[Thomas S. Lundgren]].<ref>Joseph, D. D., e T. S. Lundgren. "Quasilinear Dirichlet problems driven by positive sources." Archive for Rational Mechanics and Analysis 49.4 (1973): 241-269.</ref> | |||
n | |||
, | |||
n<1 | |||
n= | |||
n> | |||
. | |||
A solução para <math>n=1</math> que é válida no intervalo <math>\lambda \in [0,0.8785]</math> é dada por | |||
:<math>\psi = -2 \ln \left[e^{-\psi_m/2}\cosh \left(\frac{\sqrt{\lambda}}{\sqrt 2}e^{-\psi_m/2}r\right)\right]</math> | |||
onde <math>\psi_m=\psi(0)</math> está relacionada a <math>\lambda</math> como | |||
:<math>e^{\psi_m/2} = \cosh \left(\frac{\sqrt{\lambda}}{\sqrt 2}e^{-\psi_m/2}\right).</math> | |||
A solução para <math>n=2</math> que é válida no intervalo <math>\lambda \in [0,2]</math> é dada por | |||
:<math>\psi = \ln \left[\frac{64e^{\psi_m}}{(\lambda e^{\psi_m}r^2+8)^2}\right]</math> | |||
onde <math>\psi_m=\psi(0)</math> está relacionada a <math>\lambda</math> como | |||
:<math> (\lambda e^{\psi_m}+8)^2 - 64 e^{\psi_m} =0.</math> | |||
== Método de Relaxação == | == Método de Relaxação == |
Edição das 16h08min de 20 de junho de 2024
Equação de Liouville-bratu-Gelfand
Na matemática, a Equação Liouville–Bratu–Gelfand ou Equação de Liouville é uma equação de Poisson não linear, nomeada em homenagem aos matemáticos Joseph Liouville, Gheorghe Bratu e Israel Gelfand, que é descrita da seguinte forma
Essa equação aparece em problemas de fuga térmica, como na teoria de Frank-Kamenetskii, e na astrofísica, por exemplo, na equação Emden–Chandrasekhar. Esta equação pode descrever a carga espacial de eletricidade em torno de um fio brilhante ou até mesmo uma nebulosa planetária.
A solução de Liouville
Em duas dimensões, com coordenadas cartesianas (x,y), Joseph Liouville propôs uma solução em 1853 como
onde é uma função analítica arbitrária com . Em 1915, G.W. Walker[1] encontrou uma solução assumindo uma forma para . Se , então a solução de Walker é
onde é algum raio finito. Essa solução vai ao infinito para qualquer , mas vai ao infinito na origem , finito na origem para e vai a zero na origem para . Walker também propôs mais duas soluções em seu artigo de 1915.
Formas radialmente simétricas
Se o sistema a ser estudado for radialmente simétrico, então a equação em dimensões torna-se
onde é a distância a partir da origem. Com as condições de contorno
e para , uma solução real existe apenas para , onde é o parâmetro crítico chamado de parâmetro de Frank-Kamenetskii. O parâmetro crítico é para , para e para . Para , existem duas soluções e para existem infinitas soluções com as soluções oscilando em torno do ponto . Para , a solução é única e, nesses casos, o parâmetro crítico é dado por . A multiplicidade de soluções para foi descoberta por Israel Gelfand em 1963 e, posteriormente, em 1973, generalizada para todos os por Daniel D. Joseph e Thomas S. Lundgren.[2]
A solução para que é válida no intervalo é dada por
onde está relacionada a como
A solução para que é válida no intervalo é dada por
onde está relacionada a como
Método de Relaxação
Como a equação de Liouville-Bratu-Gelfand não depende do tempo, é necessária uma aproximação para uma equação similar dependente do tempo para resolvê-la numericamente aplicando o método de FTCS (Foward Time Central Space). Fazendo então a solução dessa equação convergir ao estado estacionário diante de uma evolução temporal longa o suficiente ().
Utilizando uma equação da difusão genérica chegamos na seguinte forma:
Onde é a constante de difusão. Assim é possível aplicar essa equação no método de Jacobi, método numérico de relaxação.
Referências
- https://en.wikipedia.org/wiki/Liouville%E2%80%93Bratu%E2%80%93Gelfand_equation
- Scherer, CLÁUDIO. Métodos Computacionais da Física. 2010.
- ↑ Walker, George W. "Some problems illustrating the forms of nebulae." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 91.631 (1915): 410-420.https://www.jstor.org/stable/pdf/93512.pdf?refreqid=excelsior%3Af4a4cc9656b8bbd9266f9d32587d02b1
- ↑ Joseph, D. D., e T. S. Lundgren. "Quasilinear Dirichlet problems driven by positive sources." Archive for Rational Mechanics and Analysis 49.4 (1973): 241-269.