Equação de Ginzburg-Landau complexa: mudanças entre as edições
Sem resumo de edição |
|||
Linha 82: | Linha 82: | ||
== Método FTCS == | == Método FTCS == | ||
Para estudar o comportamento das soluções foi utilizados o método FTCS(Foward-Time Central-Space) que consiste em discretizar a solução temporal e a solução espacial da equação, resolvemos as derivadas espaciais por uma aproximação dos pontos vizinhos ao ponto que queremos encontrar, enquanto atualizamos a parte temporal, também por uma aproximação como na parte espacial porém fazemos por uma diferenciação entre a taxa de variação (solução futura) e a solução atual. | |||
A partir da equação em duas dimensões: | |||
<math> | |||
\frac{\partial A}{\partial t} = \alpha(\frac{\partial^2 A}{\partial x^2}+\frac{\partial^2 A}{\partial x^2}) + A - \beta A|A|^2. | |||
</math> | |||
onde | |||
<math> | |||
\alpha = (1+ic_1); \beta = (1-ic_1) | |||
</math> | |||
Aplicamos o método da seguinte maneira: | |||
<math> | |||
\frac{A(x,y,t+\Delta t) - A(x,y,t)}{\Delta t} = \alpha(\frac{A(x+\Delta x,y,t) - 2*A(x,y,t) + A(x-\Delta x,y,t)}{\Delta x^2}+\frac{A(x,y+\Delta y,t) - 2*A(x,y,t) + A(x,y-\Delta y,t)}{\Delta y^2}) + A(x,y,t) - \beta A(x,y,t)|A(x,y,t)|^2. | |||
</math> | |||
<math> | |||
\frac{A_{i,j}^{N+1} - A_{i,j}^{N}}{\Delta t} = \alpha(\frac{A_{i+1,j}^{N} - 2*A_{i,j}^{N} + A_{i-1,j}^{N}}{\Delta x^2}+\frac{A_{i,j+1}^{N} - 2*A_{i,j}^{N} + A_{i,j-1}^{N}}{\Delta y^2}) + A_{i,j}^{N} - \beta A_{i,j}^{N}|A_{i,j}^{N}|^2. | |||
</math> | |||
Agora reorganizando a equação para deixar o tempo futuro na esquerda e o tempo atual na direita e considerando que os passos na direção x tem o mesmo tamanho do que os na direção y (<math>\Delta y = \Delta x</math>), chegamos em : | |||
<math> | |||
A_{i,j}^{N+1} = A_{i,j}(1+\Delta t(1-\beta|A_{i,j}|))+\frac{\Delta t \alpha}{\Delta x}(A_{i+1,j}+A_{i-1,j}+A_{i,j+1}+A_{i,j-1} - 4*A_{i,j}) | |||
</math> |
Edição das 18h42min de 27 de abril de 2024
A equação de Ginzburg-Landau complexa (CGLE) surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como:
- Ondas não lineares;
- Transições de fase de segunda ordem;
- Supercondutividade;
- Superfluidez;
- Condensado de Bose-Einstein.
A equação de Ginzburg-Landau complexa, quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:
É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço.
Dedução
A energia de um oscilador harmônico é expressa pela equação abaixo, onde é a energia, e a coordenada e seu respectivo momento, é a massa e a frequência angular
Ao realizar as seguintes mudanças de variáveis, e , a equação da energia produz trajetórias circulares no espaço de fase de e
Essa é uma importante simetria do oscilador harmônico linear, resultando que a sua energia é proporcional ao quadrado da amplitude de oscilação, não dependendo da fase. Isso sugere uma motivação, qual é o menor termo não linear que pode ser adicionado de modo a preservar essa simetria. Para tanto, o estado do sistema será descrito em coordenadas polares, onde é a amplitude e a fase
Define-se, então, a variável complexa , portanto a equação acima pode ser reescrita como
Ao realizar a transformação de variável , com , a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear tal que
também seja invariante a rotações.
Então, perante às transformações e , a função deve satisfazer
para que seja possível fatorar o termo responsável pela rotação e obter novamente a equação original.
Considerando pequenas oscilações, é possível expandir em potências de e até a menor ordem possível que satisfaça a condição e que introduza uma não linearidade à equação. Com isso, obtém-se
Utilizando o resultado encontrado e expressando em coordenadas polares por meio de
Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de . As novas equações obtidas são
Para encontrar a amplitude estacionária, pode-se tomar na equação, o que resulta na solução trivial e
Método FTCS
Para estudar o comportamento das soluções foi utilizados o método FTCS(Foward-Time Central-Space) que consiste em discretizar a solução temporal e a solução espacial da equação, resolvemos as derivadas espaciais por uma aproximação dos pontos vizinhos ao ponto que queremos encontrar, enquanto atualizamos a parte temporal, também por uma aproximação como na parte espacial porém fazemos por uma diferenciação entre a taxa de variação (solução futura) e a solução atual. A partir da equação em duas dimensões:
onde
Aplicamos o método da seguinte maneira:
Agora reorganizando a equação para deixar o tempo futuro na esquerda e o tempo atual na direita e considerando que os passos na direção x tem o mesmo tamanho do que os na direção y (), chegamos em :