Equação de Ginzburg-Landau complexa: mudanças entre as edições
Sem resumo de edição |
|||
Linha 38: | Linha 38: | ||
</math> | </math> | ||
Define-se, então, a variável complexa <math>A = R e^{i \phi}</math>, portanto a equação acima pode ser reescrita como | |||
<math> | <math> | ||
Linha 44: | Linha 44: | ||
</math> | </math> | ||
Ao realizar a transformação de variável <math>A \rightarrow A e^{i \chi}</math>, com <math>\chi \in \mathbb{R}</math>, a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear <math>f(A, A^*)</math> tal que | |||
<math> | <math> | ||
Linha 65: | Linha 65: | ||
f(A, A^*) = \alpha_1 A + \alpha_2 |A|^2 A, \quad \alpha_1 = \alpha_{1r} + i \alpha_{1i}, \quad \alpha_2 = \alpha_{2r} + i \alpha_{2i} | f(A, A^*) = \alpha_1 A + \alpha_2 |A|^2 A, \quad \alpha_1 = \alpha_{1r} + i \alpha_{1i}, \quad \alpha_2 = \alpha_{2r} + i \alpha_{2i} | ||
</math> | </math> | ||
Utilizando o resultado encontrado e expressando em coordenadas polares por meio de <math>A = R e^{i\phi}</math> | |||
<math> | |||
\dot{R} = \alpha_{1r} R + \alpha_{2r} R^3, \quad \dot{\phi} = \omega_0 + \alpha_{1i} + \alpha_{2i} R^2. | |||
</math> | |||
Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de <math>\phi = \varphi + \omega_0 t</math>. As novas equações obtidas são | |||
<math> | |||
\dot{R} = \alpha_{1r} R + \alpha_{2r} R^3, \quad \dot{\varphi} = \alpha_{1i} + \alpha_{2i} R^2. | |||
</math> | |||
== Método FTCS == | == Método FTCS == |
Edição das 17h57min de 27 de abril de 2024
A equação de Ginzburg-Landau complexa (CGLE) surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como:
- Ondas não lineares;
- Transições de fase de segunda ordem;
- Supercondutividade;
- Superfluidez;
- Condensado de Bose-Einstein.
A equação de Ginzburg-Landau complexa, quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:
É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço.
Dedução
A energia de um oscilador harmônico é expressa pela equação abaixo, onde é a energia, e a coordenada e seu respectivo momento, é a massa e a frequência angular
Ao realizar as seguintes mudanças de variáveis, e , a equação da energia produz trajetórias circulares no espaço de fase de e
Essa é uma importante simetria do oscilador harmônico linear, resultando que a sua energia é proporcional ao quadrado da amplitude de oscilação, não dependendo da fase. Isso sugere uma motivação, qual é o menor termo não linear que pode ser adicionado de modo a preservar essa simetria. Para tanto, o estado do sistema será descrito em coordenadas polares, onde é a amplitude e a fase
Define-se, então, a variável complexa , portanto a equação acima pode ser reescrita como
Ao realizar a transformação de variável , com , a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear tal que
também seja invariante a rotações.
Então, perante às transformações e , a função deve satisfazer
para que seja possível fatorar o termo responsável pela rotação e obter novamente a equação original.
Considerando pequenas oscilações, é possível expandir em potências de e até a menor ordem possível que satisfaça a condição e que introduza uma não linearidade à equação. Com isso, obtém-se
Utilizando o resultado encontrado e expressando em coordenadas polares por meio de
Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de . As novas equações obtidas são