Trabalhos 2022/2: mudanças entre as edições
Linha 3: | Linha 3: | ||
O objetivo deste trabalho é aplicar o Shooting method (método do chute) para encontrar as primeiras funções de onda espaciais da Equação de Schrödinger para o caso do poço de potencial infinito. Após, será realizada a evolução temporal através do Método de Crank-Nicolson. | O objetivo deste trabalho é aplicar o Shooting method (método do chute) para encontrar as primeiras funções de onda espaciais da Equação de Schrödinger para o caso do poço de potencial infinito. Após, será realizada a evolução temporal através do Método de Crank-Nicolson. | ||
==Poço de potencial infinito== | ==Poço de potencial infinito== |
Edição das 19h27min de 12 de fevereiro de 2023
Equações de Laplace e Poisson - Eletrostática
Shooting method e Método de Crank-Nicolson aplicados à Equação de Schrödinger
O objetivo deste trabalho é aplicar o Shooting method (método do chute) para encontrar as primeiras funções de onda espaciais da Equação de Schrödinger para o caso do poço de potencial infinito. Após, será realizada a evolução temporal através do Método de Crank-Nicolson.
Poço de potencial infinito
Esquematicamente, tem-se:
O potencial pode ser descrito como:
Dentro do poço, onde $V=0$, o problema pode ser modelado da seguinte maneira
ou
onde
A solução é dada por
Aplicando as condições de contorno Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(0)=\psi(L)=0 } e efetuando a normalização da função de onda, obtém-se a solução geral
cujas energias discretizadas são
Utilizando a equação acima, pode-se calcular os valores da energia de cada estado estacionário. Para o caso de um elétron, as energias referentes aos três estados estacionários são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1=0,376} eV, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2=1,504} eV e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3=3,384} eV.
Na próxima seção será feita uma estimativa dos valores acima expostos através do "Shooting method".
Shooting Method
Muitos métodos numéricos (e.g. Runge-Kutta, Forward Euler) requerem os valores da função e de sua derivada no ponto inicial. Acontece que podem haver problemas em que estes valores não estarão disponíveis, principalmente o valor da derivada em questão. Uma alternativa seria conjecturar o valor da condição inicial e integrar, através de um método apropriado, em direção à outra condição de contorno: um "chute" apropriado faria com que a integração evoluísse e retornasse um valor muito próximo, a depender da acurácia necessária, ao da condição de contorno. A ideia seria executar os seguintes passos:
- Supor um valor para a condição de contorno desconhecida (e.g. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(0)} ou Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'(0)} );
- Integrar o problema através de um método conhecido até a próxima condição de contorno (e.g., Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(L)} );
- Se o chute inicial não fez com que o sistema evoluísse até Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(L)} , então deve-se supor outro valor para a condição inicial e repetir o procedimento.
O método descrito acima de forma simplificada recebe o nome, em inglês, de Shooting method, o que em português seria algo como "Método do tiro" ou "Método do chute". Na próxima seção esse método será aplicado para o caso do poço infinito de potencial.
Poço de potencial infinito
Seja a equação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2\psi}{dx^2}=-k\psi E} , onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{2m}{\hbar^2}} .
Escrevendo com outra notação: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ddot{\psi}=-k\psi E} .
Dividindo o problema em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x } 's pequenos, pode-se reescrever a equação acima da seguinte forma:
.
Também:
.
Além disso:
.
A integração, então, é realizada utilizando as relações 8, 9, 10 e 11, até que se atinja a borda do poço, isto é, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=L} .
Com a discretização acima, foi possível implementar o algoritmo. Das condições de contorno do problema, sabe-se que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(0)=0} , de modo que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1=0} . No entanto, o valor da derivada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\psi_1}} não é conhecido, de modo que supõe-se que seja uma constante, a saber, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\psi_1}=1} . Chutando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=0} , utilizando a massa do elétron e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=1} , obtém-se a primeira solução estacionária:
Pode-se observar que o valor de energia obtido numericamente é cerca de 4% menor do que aquele obtido analiticamente.
Para o caso n=2:
Aqui, o valor obtido numericamente é aproximadamente 5% maior do que o valor obtido analiticamente.
Para o caso n=3:
Para este caso, o valor numérico é cerca de 1% menor do que o valor analítico.
Método de Crank-Nicolson
Seja a equação diferencial
,
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{\textbf{r}}} é um operador diferencial linear em r.
Em forma discretizada no tempo, pode-se escrever
.
Por simetria, pode-se escrever a equação acima utilizando um f à direita:
A equação acima é dita "explícita" pois, para o cálculo de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{n+1}} , só é utilizado o valor já explicitamente calculado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{n}} . Já a equação anterior é chamada implícita pois Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{n+1}} está presente explicitamente. Em termos numéricos, um método peca pelo excesso enquanto o outro o faz pela falta, de modo que um resultado mais satisfatório pode ser obtido ao tomar-se a média dos dois:
Após alguma álgebra:
.
Chamando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=I+\frac{dt}{2}L_{\textbf{r}} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=I-\frac{dt}{2}L_{\textbf{r}} } , onde I indica a matriz identidade, pode-se reescrever a equação acima na seguinte maneira:
.
Trata-se do método de Crank-Nicolson, mais estável e preciso do que os métodos implícito e explícito. Caso o problema apresentar condições de contorno, estas serão devidamente implementadas nos elementos das matrizes M e E.
Equação de Schrödinger
Seja a equação de Schrödinger unidimensional
.
Efetuando a discretização das variáveis através do Método de Crank-Nicolson, obtém-se:
Substituindo as discretizações na eq. de Schrödinger:
Supondo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar=m=1} e separando as partes explícita e implícita, obtém-se, após alguma álgebra:
Definindo
e
obtém-se:
A equação acima pode ser escrita em forma matricial, de modo que:
onde
e
Para avaliar a evolução temporal do sistema, é necessário encontrar . Utilizando resultados anteriores, pode-se obter através da seguinte relação:
Poço de potencial infinito
Para o presente caso a ideia é obter a evolução temporal do sistema, impondo condições de contorno iguais a zero, de modo que os operadores e ficam:
e
A ideia é que o primeiro e o último termo do tanto do vetor quanto do vetor seja constante, o que satisfaz as condições de contorno do presente caso. Também é interessante notar que os índices são todos constantes, visto que no presente caso o potencial dentro do poço é nulo.
Implementando o algoritmo descrito acima, obteve-se:
Evolução temporal para o caso n=1. Nesta animação e nas subsequentes, foram sobrepostas as partes real e imaginária da equação de Schrödinger: a linha azul diz respeito à parte real enquanto a amarela, à imaginária.
Na figura acima, tem-se a evolução do caso n=2.
Por último, o caso n=3.