Grupo3 - Ondas2: mudanças entre as edições
Linha 94: | Linha 94: | ||
O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto <math>x_j</math>: | O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto <math>x_j</math>: | ||
<math>u( | <math>u(x_i + \Delta x,t^n) = u(x_i,t^n) + \frac{\partial u}{\partial x}(x_i,t^n)\Delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(x_i,t^n)\Delta x^2 + \mathcal{O}(\Delta x^3),</math> | ||
<math>u( | <math>u(x_i - \Delta x,t^n) = u(x_i,t^n) - \frac{\partial u}{\partial x}(x_i,t^n)\Delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(x_i,t^n)\Delta x^2 + \mathcal{O}(\Delta x^3).</math> | ||
Subtraindo as duas expressões, encontramos a expressão | Subtraindo as duas expressões, encontramos a expressão | ||
<math>\frac{\partial u}{\partial x} | | <math>\left.\frac{\partial u}{\partial x}\right|_i^n = \frac{u^n_{i+1} - u^n_{i-1}}{2 \Delta x} + \mathcal{O}(\Delta x^2)</math>, | ||
A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas: | A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas: | ||
<math>\textbf{U}^{n+1} | <math>\textbf{U}^{n+1}_i = \textbf{U}^n_i - \frac{\Delta t}{2 \Delta x} [\textbf{F}^n_{i+1} - \textbf{F}^n_{i-1}] + \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t)</math> | ||
Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores. | Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores. |
Edição das 22h41min de 24 de outubro de 2017
Introdução
Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:
,
onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.
Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:
,
onde é a matriz identidade.
Considerando apenas uma dimensão e com , temos a equação de adveção:
,
onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .
A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por
E admite duas soluções, representadas por pulsos, e .
Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos
,
então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:
Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,
onde
O Problema Físico
O Modelo de Corda Ideal
Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento da corda em intervalos de comprimentos iguais, dessa forma . Cada intervalo é discretizado, representado por , . Também podemos dividir o tempo em intervalos iguais e denotá-los como , .
Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita, utilizando derivadas centradas da seguinte forma:
Assim, chegamos em uma equação discretizada:
.
Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo
,
onde
Um Quadro Mais Realístico - O Modelo de Corda Rígida
Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como
onde é a velocidade transversal de propagação do pulso na corda, dada pela relação (sendo a tensão na corda e a densidade linear da mesma), é um parâmetro adimensional de fricção que representa a rigidez da corda e o comprimento da corda.
O parâmetro é dado por
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,
onde é o raio da corda, é o Módulo de Young e a área da secção da corda.
Ao discretizarmos a equação da onda em uma corda com fricção e a resolvendo para obtemos:
O fato de essa discretização depender do deslocamento da corda em posições e implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.
Os Métodos Utilizados
Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.
O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto :
Subtraindo as duas expressões, encontramos a expressão
,
A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:
Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.
O Método de Lax-Friedrichs
O método de Lax-Friedrichs consiste em substituir o termo com sua respectiva média espacial, i.e., . Logo, temos a seguinte equação de recorrência:
O Método de Leapfrog
Podemos adaptar o método de Leapfrog para esse sistema de equações ao fazermos
Com a representação Leapfrog das equações do sistema de três equações, temos:
Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:
Contudo, podemos fazer uma simples substituição das equações e nas equações e e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.
O Método de Lax-Wendroff
O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor a partir de um passo médio de Lax-Friedrichs:
,
,
E encontramos os fluxos a partir dos valores de
Logo, com um meio passo de Leapfrog, temos a expressão final do método:
Análise e Discussão dos Resultados
Análise de Erro e Estabilidade dos Métodos
Conclusões (?)
vsf caetano vsf doria