Equação de Langevin: mudanças entre as edições
Sem resumo de edição |
|||
Linha 76: | Linha 76: | ||
É importante lembrar que entre os dois últimos passos é necessário atualizar o termo <math>\vec{f}</math>, já que ele pode depender de termos já atualizados como <math>\vec{p}</math> ou <math>\vec{r}</math>. | É importante lembrar que entre os dois últimos passos é necessário atualizar o termo <math>\vec{f}</math>, já que ele pode depender de termos já atualizados como <math>\vec{p}</math> ou <math>\vec{r}</math>. | ||
== Implementação == | |||
[[Arquivo:Livre_g10T1_c.gif|thumb|center|300px|Simulação de uma partícula livre sob o efeito da Equação de Langevin.]] | |||
=== Referências === | === Referências === | ||
<references/> | <references/> |
Edição das 16h13min de 17 de outubro de 2022
Artur Uhlik Fröhlich e Leonardo Dasso Migotto
O objetivo deste trabalho é resolver computacionalmente a equação de Langevin utilizando o método BAOAB[LEIMKUHLER.] Serão explorados os casos de partículas individuais livres ou sujeitas a um campo potencial, estudando os efeitos da variação do coeficiente de atrito no desvio quadrático médio e na transisão de fases.
Equação de Langevin
Esta equação diferencial estocástica descreve a evolução de um sistema quando sujeito a forças do tipo determinísticas e estocásticas simultâneamente. A sua aplicação mais popular é relativa ao movimento Browniano, o movimento de uma partícula macroscópica imersa em um fluído, sujeita à força de atrito excercida pelas partículas microscópicas do fluído. Neste caso, a equação pode ser escrita como:
Na equação acima, é o coeficiente de atrito e é um ruído estocástico branco, que segue o Teorema Central do Limite com média 0 e desvio padrão relacionado à temperatura, a Constante de Boltzmann, e a massa da partícula. A partir desta expressão, é possível descobrir a relação do coeficiente de difusão do fluído e os valores envolvidos na equação:
Onde é o coeficiente de difusão do meio, é a constante de Boltzmann, é a temperatura e é a massa da partícula macroscópica. Outra relação presente no livro do Frenkel [FRENKEL], desenvolvida teoricamente, é a do coeficiente de difusão e o deslocamento quadrático médio de uma partícula no meio:
Método BAOAB
O método numérico escolhido para realizar a integração da equação é conhecido como BAOAB, desenvolvido por Leimkuhler e Mattews [1] utilizado para resolver equações diferenciais estocásticas.
Ele é baseado na solução exata para o momentum,
e faz o uso de um método de separação das equações entre as denominadas A, B e O, respectivamente representadas:
O aqui representa um número aleatório Gaussiano que faz o papel da força estocástica.
A equação "A" realiza meio passo no tempo da distância, a "B" realiza um meio passo para o momentum e o "O" contabiliza a contribuição estocástica equação.
Essas equações podem formar vários algoritmos de integração mas o utilizado nesse trabalho será o BAOAB:
É importante lembrar que entre os dois últimos passos é necessário atualizar o termo , já que ele pode depender de termos já atualizados como ou .
Implementação
Referências
- ↑ Leimkuhler, B., & Matthews, C. (2015). Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. (Interdisciplinary Applied Mathematics; Vol. 39). Springer. https://doi.org/10.1007/978-3-319-16375-8