Modelo de Potts - 2D: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 3: | Linha 3: | ||
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores <math>1</math> ou <math>-1</math>, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél <math>q</math> da seguinte forma: <math>\theta_n = \frac{2\pi n}{q}</math>. A quantidade <math>\theta_n</math> nos fornece as possíveis orientações para os spins. Os valores que <math>n</math> pode assumir são <math>n=0,1,2,...,q-1</math>. Dessa forma, um Modelo de Potts bidimensionaç com <math>q=10</math> possui uma rede bidimensional de spins com 10 orientações diferentes. | Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores <math>1</math> ou <math>-1</math>, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél <math>q</math> da seguinte forma: <math>\theta_n = \frac{2\pi n}{q}</math>. A quantidade <math>\theta_n</math> nos fornece as possíveis orientações para os spins. Os valores que <math>n</math> pode assumir são <math>n=0,1,2,...,q-1</math>. Dessa forma, um Modelo de Potts bidimensionaç com <math>q=10</math> possui uma rede bidimensional de spins com 10 orientações diferentes. | ||
[[Arquivo:spin_Q2.png|thumb|upright=1.1|right|Possibilidades de spin para <math>Q=2</math>. | [[Arquivo:spin_Q2.png|thumb|upright=1.1|right|Possibilidades de spin para <math>Q=2</math>.][Arquivo:spin_Q3.png|thumb|upright=1.2|right|Possibilidades de spin para <math>Q=3</math>.]] | ||
] | |||
[[Arquivo:spin_Q4.png|thumb|upright=1.2|right|Possibilidades de spin para <math>Q=4</math>.]] | [[Arquivo:spin_Q4.png|thumb|upright=1.2|right|Possibilidades de spin para <math>Q=4</math>.]] | ||
Edição das 11h35min de 17 de outubro de 2022
O Modelo
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} ou , no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél da seguinte forma: . A quantidade nos fornece as possíveis orientações para os spins. Os valores que pode assumir são . Dessa forma, um Modelo de Potts bidimensionaç com possui uma rede bidimensional de spins com 10 orientações diferentes.
]
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como
onde é a constante de acoplamento que determina a intensidade da interação e é a delta de Kronecker, definida como 0 se e 1 se .
Relação com o Modelo de Ising
O Modelo de Ising é obtido quando tomamos na expressão para .
O Hamiltoniano de Ising pode ser escrito como o Hamiltoniano do Potts mais uma constante aditiva
Se incluírmos o campo magnético, o Hamiltoniado fica
Algoritmo de Metropolis
Vamos implementar o Modelo de Potts utilizando o algoritmo de Metropolis.
O algoritmo de Metropolis é um método de Cadeia de Markov Monte Carlo (MCMC) para obter amostras aleatórias a partir de uma distribuição de probabilidade da qual a amostragem direta é difícil. O procedimento para a implementação do algoritmo é apresentado abaixo.
1. Inicialize
a) Escolha um estado inicial ;
b) Coloque
2. Itere
a) Gere um estado candidato aleatório de acordo
b) Calcule a probabilidade de aceitação
c) Aceite ou rejeite:
1) Gere um número aleatório uniforme ;
2) E se , aceite o novo estado e defina ;
3) E se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u>A(x',x_t)} , rejeite o novo estado e copie o estado antigo para frente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{t+1}=x_t} ;
4) Incremente: coloque t = t + 1
Em nosso caso, a distribuição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(x,x')}{A(x',x)}} é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-\beta \Delta E}} , onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E=E_{x'} - E_{x}} .
Resultados das simulações
Energia
| Energia em cada MCS para Q indo de 2 até 10 e L = 64 utilizando algoritmo de Metropolis. | |
|---|---|
Magnetização
| Magnetização em cada MCS para Q indo de 2 até 10 e L = 64 utilizando algoritmo de Metropolis. | |
|---|---|
Códigos utilizados
Referências
D. P. Landau, K. Binder. A Guide Monte Carlo Simulations in Statistical Physics. Cambridge University. New York. 2000.
L. M. Barone, E. Marinari, G. Organtini, F. Ricci-Tersengui. Scientific Programming: C-Language, Algorithms and Models in Science. World Scientific. Singapore. 2013.