Grupo5 - Eq. Schroedinger: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 30: | Linha 30: | ||
Que condições podemos impor para a fronteira? Quando se trata do problema analiticamente, costuma-se considerar que a função de onda tende a zero no infinito. Numericamente, pode-se fazer uma transposição disso, criando uma condição para bordas em pontos suficientemente distantes do centro da distribuição da função de onda, igualando-as a zero. Outra forma de tratar o problema numericamente é criando condições de contorno periódicas, em que para as bordas vale <math>\Psi^{n}_{0} = \Psi^{n}_{j_{max}}</math> para todo <math>n</math> (ou, para as bordas <math>a</math> e <math>b</math> há a relação <math>\Psi (a, t) = \Psi (b, t)</math> para todo <math>t</math>). | Que condições podemos impor para a fronteira? Quando se trata do problema analiticamente, costuma-se considerar que a função de onda tende a zero no infinito. Numericamente, pode-se fazer uma transposição disso, criando uma condição para bordas em pontos suficientemente distantes do centro da distribuição da função de onda, igualando-as a zero. Outra forma de tratar o problema numericamente é criando condições de contorno periódicas, em que para as bordas vale <math>\Psi^{n}_{0} = \Psi^{n}_{j_{max}}</math> para todo <math>n</math> (ou, para as bordas <math>a</math> e <math>b</math> há a relação <math>\Psi (a, t) = \Psi (b, t)</math> para todo <math>t</math>). | ||
Já a condição inicial é arbitrária, pois define o estado inicial do sistema que queremos tratar. Fazendo uma referência ao tratamento de sistemas clássicos, seria como definir posição e momento iniciais. É claro que, para ter o sentido físico de uma função de onda, deve-se ter o cuidado de criar uma condição inicial normalizada, satisfazendo | |||
<math>\int _{-\infty}^{\infty} \, \lvert \Psi (x, 0) \rvert ^2 \, dx = 1</math> | |||
bastando, então, inseri-la no programa. | |||
Edição das 20h31min de 23 de outubro de 2017
A evolução temporal do estado quântico Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(\mathbf{r},t) } é dada pela equação de Schrödinger, a qual é postulada como [citação do Cohen, descobrir como fazer a citação]:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \left [ -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right ] \Psi(\mathbf{r},t)}
Posto em unidades atômicas (onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_e} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar} são unitários), o caso unidimensional de um elétron num potencial independente do tempo reduz-se a:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial t} \Psi(x,t) = \left [ \frac{i}{2}\frac{\partial^2}{\partial x^2} - i V(x)\right ] \Psi(x,t)}
Método numérico
Buscando resolver a equação numericamente, tem-se a discretização de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial ^2 \Psi}{\partial x^2}} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\Psi^{n}_{j-1} - 2\Psi^{n}_{j} + \Psi^{n}_{j+1}}{\left(\Delta x \right)^2}}
e as discretizações de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \Psi}{\partial t}} (explícita e implícita, respectivamente):
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\Psi^{n+1}_{j} - \Psi^{n}_{j}}{\Delta t}, \quad \frac{\Psi^{n}_{j} - \Psi^{n-1}_{j}}{\Delta t}}
Tanto no método explícito quanto no método implícito não é conservada a norma do estado (o que é estritamente necessário, já que o estado pode ser interpretado como uma onda de probabilidade). Por esse motivo, utiliza-se o método de Crank-Nicolson, o qual tem essa propriedade \cite{enswork}.
O método de Crank-Nicolson consiste em uma média aritmética dos métodos explícito e implícito. Excetuando manipulações algébricas triviais, verifica-se que a relação de recorrência do método é dada por:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\Psi^{n+1}_{j-1} + b_{j}\Psi^{n+1}_{j} + a\Psi^{n+1}_{j+1} = a^* \Psi^{n}_{j-1} + b_{j}^{*} \Psi^{n}_{j} + a^*\Psi^{n}_{j+1},} onde
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \equiv -\frac{i \Delta t}{4(\Delta x)^2}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_{j} \equiv 1+\frac{ i\Delta t}{2} \left[\frac{1}{(\Delta x)^2} + V(j \Delta x) \right]} .
A integração numérica depende, portanto, do potencial em que o elétron está sujeito, bem como da sua condição inicial e suas das condições de contorno.
Que condições podemos impor para a fronteira? Quando se trata do problema analiticamente, costuma-se considerar que a função de onda tende a zero no infinito. Numericamente, pode-se fazer uma transposição disso, criando uma condição para bordas em pontos suficientemente distantes do centro da distribuição da função de onda, igualando-as a zero. Outra forma de tratar o problema numericamente é criando condições de contorno periódicas, em que para as bordas vale Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi^{n}_{0} = \Psi^{n}_{j_{max}}} para todo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} (ou, para as bordas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} há a relação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi (a, t) = \Psi (b, t)} para todo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} ).
Já a condição inicial é arbitrária, pois define o estado inicial do sistema que queremos tratar. Fazendo uma referência ao tratamento de sistemas clássicos, seria como definir posição e momento iniciais. É claro que, para ter o sentido físico de uma função de onda, deve-se ter o cuidado de criar uma condição inicial normalizada, satisfazendo
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _{-\infty}^{\infty} \, \lvert \Psi (x, 0) \rvert ^2 \, dx = 1}
bastando, então, inseri-la no programa.