|
|
Linha 70: |
Linha 70: |
| Com essas 4 medidas, podemos dividir a soma 2 vezes: | | Com essas 4 medidas, podemos dividir a soma 2 vezes: |
|
| |
|
| <math>\tilde{a_k} = \sum_{t=0}^3 a_t \cdot e^{-i \frac{2\pi}{4}\cdot k \cdot t}</math> | | <math>A = \sum_{t=0}^3 a_t \cdot e^{-i \frac{2\pi}{4}\cdot k \cdot t}</math> |
|
| |
|
| <math>\tilde{a_k} = \sum_{t_1=0}^1 a_{2t_1} \cdot e^{-i \frac{2\pi}{2}\cdot k \cdot t_1} + C_k^1\sum_{t_1=0}^1 a_{2t_1+1} \cdot e^{-i \frac{2\pi}{2}\cdot k \cdot t_1}</math> | | <math>A = \sum_{t_1=0}^1 a_{2t_1} \cdot e^{-i \frac{2\pi}{2}\cdot k \cdot t_1} + C_k^1\sum_{t_1=0}^1 a_{2t_1+1} \cdot e^{-i \frac{2\pi}{2}\cdot k \cdot t_1}</math> |
|
| |
|
| <math>\tilde{a_k} = \sum_{t_2=0}^0 a_{4t_2} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^2\sum_{t_2=0}^0 a_{4t_2+2} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^1\sum_{t_2=0}^0 a_{4t_2+1} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^3\sum_{t_2=0}^0 a_{4t_2+3} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2}</math> | | <math>A = \sum_{t_2=0}^0 a_{4t_2} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^2\sum_{t_2=0}^0 a_{4t_2+2} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^1\sum_{t_2=0}^0 a_{4t_2+1} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2} + C_k^3\sum_{t_2=0}^0 a_{4t_2+3} \cdot e^{-i \frac{2\pi}{1}\cdot k \cdot t_2}</math> |
|
| |
|
| e como temos <math>C_k^j = (e^{-i\frac{2\pi}{N}k})^j</math> podemos calcular | | e como temos <math>C_k^j = (e^{-i\frac{2\pi}{N}k})^j</math> podemos calcular |
|
| |
|
| <math>\tilde{a_0} = 1.00 \cdot C_0^1 - 1.00 \cdot C_0^3 = 0.00 + i0.00</math> | | <math>A_0 = 1.00 \cdot C_0^1 - 1.00 \cdot C_0^3 = 0.00 + i0.00</math> |
|
| |
|
| <math>\tilde{a_1} = 1.00 \cdot C_1^1 - 1.00 \cdot C_1^3 = 0.00 - i2.00</math> | | <math>A_1 = 1.00 \cdot C_1^1 - 1.00 \cdot C_1^3 = 0.00 - i2.00</math> |
|
| |
|
| <math>\tilde{a_2} = 1.00 \cdot C_2^1 - 1.00 \cdot C_2^3 = 0.00 + i0.00</math> | | <math>A_2 = 1.00 \cdot C_2^1 - 1.00 \cdot C_2^3 = 0.00 + i0.00</math> |
|
| |
|
| <math>\tilde{a_3} = 1.00 \cdot C_3^1 - 1.00 \cdot C_3^3 = 0.00 + i2.00</math> | | <math>A_3 = 1.00 \cdot C_3^1 - 1.00 \cdot C_3^3 = 0.00 + i2.00</math> |
|
| |
|
| === FFT para N diferente de uma potência de 2 === | | === FFT para N diferente de uma potência de 2 === |
|
| |
|
| Mesmo com a FFT sendo um algoritmo extremamente eficiente para <math>N = 2^p</math>, esse dificilmente é o caso que encotramos. Ainda assim, para <math>N</math> altamente composto (<math>N = r_1\cdot r_2 \cdot ... \cdot r_m</math>) o algoritmo ainda resulta em uma boa queda no tempo de cálculo. | | Mesmo com a FFT sendo um algoritmo extremamente eficiente para <math>N = 2^p</math>, esse dificilmente é o caso que encotramos. Ainda assim, para <math>N</math> altamente composto (<math>N = r_1\cdot r_2 \cdot ... \cdot r_m</math>) o algoritmo ainda resulta em uma boa queda no tempo de cálculo. |
A Transformada rápida de Fourier (em inglês Fast Fourier Transform, ou FFT) é um algoritmo que torna o cálculo da Transformada Discreta de Fourier (DFT) viável para a maior parte das aplicações.
Transformada Discreta de Fourier
Em muitas aplicações se tem informação sobre um conjunto de dados, ao invés de uma função contínua. A Transformada Discreta de Fourier transforma esse conjunto de dados em um conjunto de tamanho igual com informação sobre as frequências da função que satisfaz o conjunto de dados.
Para um conjunto de dados igualmente espaçados, pode-se, ao considerar os dados como um período de uma função periódica, cujo período normalmente é considerado entre para facilitar o cálculo (e que pode sempre ser transformada em uma função nesse interválo), mostrar que a transformada discreta de Fourier pode ser dada pela equação:
A sua inversa é, em paralelo ao caso da transformada contínua,
A transformada também pode ser expressa em forma vetorial, como
onde é definido como
O cálculo dessa expressão leva em torno de passos para o resultado. Uma amostra com 3,000 pontos precisa de 9,000,000 operações para a transformada ser obtida, tornando a DFT inviável para aplicações rápidas.
Transformada Rápida de Fourier
É possível calcular a transformada com passos. Para isso se dispõe de um algoritmo chamado Transformada Rápida de Fourier.
Considera-se um conjunto de pontos (com inteiro, então, da definição da DFT
podemos dividir o somatório em 2:
onde a soma em vermelho é a parte par e a soma em azul é a parte ímpar da transformada. As duas somas tem o mesmo expoente, que agora é dividido por .
Desse expoente, é evidente a relação entre o ponto e o ponto
Com essa relação, podemos ver que e tem o mesmo expoente e podem ser calculadas ao mesmo tempo. Mais que isso, a nova forma da transformada pode ser sucessivamente dividida, cada vez produzindo somas com limites menores.
Exemplo
Suponha que temos a função sinusoidal e fazemos quatro medidas no intervalo de 1 segundo, resultando em
Com essas 4 medidas, podemos dividir a soma 2 vezes:
e como temos podemos calcular
FFT para N diferente de uma potência de 2
Mesmo com a FFT sendo um algoritmo extremamente eficiente para , esse dificilmente é o caso que encotramos. Ainda assim, para altamente composto () o algoritmo ainda resulta em uma boa queda no tempo de cálculo.