Modelos Epidemiológicos: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 99: Linha 99:
<math> i(s) = \frac{\gamma}{\beta}\ln (s) -\frac{\gamma}{\beta}\ln (s_0) -s +1 \qquad (9) </math>
<math> i(s) = \frac{\gamma}{\beta}\ln (s) -\frac{\gamma}{\beta}\ln (s_0) -s +1 \qquad (9) </math>


Derivando a expressão (9) em relação a <math>s</math> observa-se que a função atinge o ponto de máximo quando <math>s = \gamma/\beta</math>. Nas situações em que temos <math>s < \gamma/\beta</math> e <math>s > \gamma/\beta</math>, obtemos respectivamente o comportamento crescente e decrescente para função <math>i(s)</math>. Na sequência é plotada a curva <math>i(s)</math> para diferentes valores de <math> s_0 </math>. Observe que o sentido da abscissa <math>s</math> é negativo para o avanço da pandemia.
Derivando a expressão (9) em relação a <math>s</math> observa-se que a função atinge o ponto de máximo quando <math>s = \gamma/\beta</math>. Nas situações em que temos <math>s < \gamma/\beta</math> e <math>s > \gamma/\beta</math>, obtemos respectivamente o comportamento crescente e decrescente para função <math>i(s)</math>. Na sequência é plotada a curva <math>i(s)</math>, observe que o sentido da abscissa <math>s</math> é negativo para o avanço da pandemia.


[[File:I(s).png|500 px|Função i(s)]]
[[File:I(s).png|500 px|Função i(s)]]


Quando a condição inicial <math> s_0 </math> esta à direita da reta <math>s = \gamma/\beta</math> a epidemia irá aumentar o seu número de infectados, pois <math> R_0 </math> é menor que <math>S</math>. O número de infectados irá aumentar até o número de indivíduos suscetíveis ser igual a <math>\gamma/\beta</math>, posteriormente o número de infectados irá decair. Já quando a condição inicial <math> S_0 </math> está à esquerda da reta <math>S = \gamma/\beta</math> a epidemia irá diminuir o seu número de infectados, pois <math> R_0 </math> é menor do que <math>S</math>.
Quando <math> s </math> esta à direita da reta <math>s = \gamma/\beta</math> a epidemia irá aumentar o seu número de infectados, pois <math> R_0 </math> é maior do que <math>1</math>. O número de infectados irá aumentar até o número de indivíduos suscetíveis ser igual a <math>\gamma/\beta</math>, posteriormente o número de infectados irá decair, pois <math> R_0 </math> é menor do que <math>1</math>.


=== Modelo SIR com quarentena voluntária ===
=== Modelo SIR com quarentena voluntária ===

Edição das 07h36min de 29 de novembro de 2021

Em construção

Grupo: Gabriel Schmökel, Julia Remus e Luis Gustavo Lang Gaiato

O objetivo do trabalho é realizar a implementação do modelo SIR (Suscetível, Infectado e Recuperado) e de um modelo simplificado do proposto pelo artigo "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics" [1] utilizando Monte Carlo. Espera-se obter ondas de infecção quando utilizado o processo de quarentena voluntária, tal qual observada pelos dados da Covid-19 e encontrada pelo artigo de referência do modelo.

Será apresentada uma breve introdução sobre o tema e as equações que envolvem o desenvolvimento dos cálculos, as implementações e seus respectivos resultados. São deixados alguns objetivos futuros para um trabalho posterior.

Introdução

A pandemia atual mostrou que táticas para mitigar o avanço da doença dependem não só de medidas governamentais, mas também da percepção do indivíduo nesse meio. [2]. Essa percepção depende da métrica utilizada por cada pessoa, levando em consideração fatores como: prejuízos psicológicos, situação econômica, o entendimento sobre o que é certo (como a sociedade o enxerga, quais as verdades que são consideradas pelo indivíduo), a escolha pelo bem comum, entre outros. A visão do indivíduo pode mudar ao longo do tempo e, com isso, modificar como a doença evolui - como é quantificado pela formação de ondas de infecção atualmente. [3]

A fim de simular esses cenários de pandemia com e sem a percepção do indivíduo, propõe-se um trabalho com o objetivo de realizar a implementação do modelo SIR e de um modelo simplificado do proposto pelo artigo "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics" [1] utilizando Monte Carlo.

O modelo apresentado por Marco Amaral, et al [1] propõe que o indivíduo escolha adequar-se a uma das estratégias da quarentena (fazer ou não) dependendo do risco que observa a partir da quantidade de infectados no sistema. Acoplada à escolha da estratégia, está o modelo SIR com parâmetros distintos para indivíduos não isolados e isolados. Para a solução, os autores utilizam a teoria de campo médio, obtendo ondas de infecção ao longo do tempo.

Neste trabalho, a escolha da estratégia pelo indivíduo se dará de acordo com o estado dos seus vizinhos mais próximos - utilizado o dilema do prisioneiro - enquanto a evolução dos infectados no sistema será realizada com o modelo SIR, assim como no trabalho citado. Para a simulação foi utilizado o método de Monte Carlo.

É esperado obter as ondas de infecção como previsto por Marco Amaral, et al [1] e observadas nos dados reais da Covid-19, ambos os exemplos podem ser observados a seguir. Como o método é diferente, não é esperado que as ondas sejam iguais às do artigo, mas sim, um movimento mais sutil.

  • Resultado do modelo proposto por Marco Amaral, et al [1]
  • Casos diários confirmados de Covid-19 a cada um milhão de pessoas no Reino Unido e na Alemanha

No gráfico da direita pode-se observar a quantidade de casos diários (infectados) na Alemanha e no Reino Unido ao longo do tempo, vê-se que existem ondas de infecção. Já no gráfico da direita, é possível observar a solução obtida por Marco Amaral, et al [1].

O esquemático do modelo SIR com a escolha da quarentena pode ser visto na seção Modelo SIR com quarentena voluntária.

Modelos

Modelo SIR

Esquemáto modelo SIR

Em 1927 Kermack e McKendrick elaboraram o modelo SIR que tinha como função descrever o comportamento de uma pandemia [4]. O modelo SIR é um dos mais simples modelos comportamentais, o qual descreve a variação de três parâmetros ao longo do tempo:

  • Suscetível (S): Número de indivíduos suscetíveis. Quando um indivíduo suscetível e um infectado entram em contato, o indivíduo suscetível tem uma probabilidade de contrair a doença, caso contraia o indivíduo deixa de ser suscetível e torna-se infectado.
  • Infectado (I): Número de indivíduos infectados. Indivíduos infectados tem uma probabilidade de infectar indivíduos suscetíveis quando em contato, e uma probabilidade de tornar-se indivíduos removidos a medida que tempo avança.
  • Recuperado ou Removido (R): Número de indivíduos removidos (recuperados ou mortos pela doença). Indivíduos que foram infectados, tornam-se recuperados ou mortos pela doença, desta forma entram na classificação de indivíduos removidos, já que não são mais suscetíveis a pegar a doença, pois adquiriram imunidade. Assumindo que o número de mortos é irrelevante ao se comparar com a população total, então o parâmetro recebe o nome de indivíduos recuperados ou resistentes.

A dinâmica de uma epidemia geralmente é mais rápida do que os números de nascimentos e óbitos, por essa razão se omite estas quantidades no modelo comportamental simples do SIR. Usando uma população fixa, Kermack e McKendrick chegaram nas seguintes equações diferenciais que descrevem a dinâmica de uma epidemia [4]:

O sistema descrito pelas equações acima é não linear, porém é possível derivar uma solução analítica de forma implícita [5].

A população total no SIR é constante, e pode ser expressada pela soma total dos indivíduos suscetíveis, infectados e removidos:

Na forma normalizada a expressão (4) é representada por:

A taxa de transmissão da doença é dada pela variável , esta depende de outras duas variáveis, a primeira indica a "transmissibilidade", definida por , a segunda indica o "número médio de contatos" entre infectados e suscetíveis, indicada por . Portanto, pode-se escrever a taxa de transmissão pela expressão:

A taxa de remoção da doença, indicada por , é o inverso do período infeccioso, indicada por , que o indivíduo permanecerá doente. Note, que quanto maior o período infeccioso, mais demorada é a remoção de Infectados para Removidos.

Dinâmica do Modelo SIR e o Número de Reprodução

O número básico de reprodução, , corresponde ao número médio de pessoas que serão contaminadas pela doença quando um indivíduo infectado é introduzido em uma população completamente suscetível [6].

Conforme o valor de temos o seguinte comportamento [6]:

  • epidemia crescente;
  • equilíbrio endêmico;
  • epidemia decrescente.

Pode-se interpretar melhor o comportamento do número de reprodução analisando a curva . Para obter essa função dividimos a expressão (2) pela expressão (1) na forma normalizada, posteriormente integramos ambos os lados da igualdade, assim chegamos em [7]:

Derivando a expressão (9) em relação a observa-se que a função atinge o ponto de máximo quando . Nas situações em que temos e , obtemos respectivamente o comportamento crescente e decrescente para função . Na sequência é plotada a curva , observe que o sentido da abscissa é negativo para o avanço da pandemia.

Função i(s)

Quando esta à direita da reta a epidemia irá aumentar o seu número de infectados, pois é maior do que . O número de infectados irá aumentar até o número de indivíduos suscetíveis ser igual a , posteriormente o número de infectados irá decair, pois é menor do que .

Modelo SIR com quarentena voluntária

Esquemáto modelo SIR com quarentena voluntária em suscetíveis

No esquemático pode-se ver o modelo utilizado no trabalho, ele é uma simplificação do artigo escrito por Amaral, et al [1]. Nele temos:

  • Componentes suscetíveis podem estar ou não em quarentena. A probabilidade para a escolha depende da estratégia adotada pelos quatro vizinhos do sítio escolhido.
  • Ao escolher estar ou não em quarentena, esses componentes têm probabilidades diferentes de adquirir a doença ( e ) e se tornar infectados.
  • Infectados possuem a mesma probabilidade de se tornarem recuperados.
  • Após recuperados da doença, as pessoas não conseguem adquiri-la novamente.
  • Todos os indivíduos escolhem estar ou não isolados independente do seu estado de infecção, mas somente a quarentena dos suscetíveis afeta a evolução SIR.


Para simular a quarentena voluntária é utilizado o jogo definido pelo Dilema do Prisioneiro. Esse dilema descreve a situação em que dois condenados (A e B) precisam decidir se cooperam ou não sem saber a decisão do seu par. Para isso temos quatro possibilidades: A e B cooperam (ambos saem com uma recompensa R), A coopera mas B não coopera (B ficaria com o valor da tentação T e A com o custo do sonso S), A não coopera e B coopera (A ficaria com o valor da tentação T e B com o custo do sonso S) e a situação onde A e B não cooperam (ambos ganham com uma penalidade P). [8]

Essas possibilidades podem ser resumidas em uma matriz de perdas e ganhos (matriz de payoff ou forma normal):

A coopera A não coopera
B coopera R / R S / T
B não coopera T / S P / P


Os valores da matriz payoff devem obedecer a ordem . Além disso, para simulações com várias iterações deve ser obedecido que . [8]

A proposta de observar a evolução da infecção dependendo da quarentena precisa utilizar mais de um par de interagentes, por isso é definido uma rede onde cada componente ocupa um espaço fixo sem poder se movimentar. A partir disso, cada um desses componentes interage com seus quatro vizinhos mais próximos (para os pontos do contorno é utilizado que as bordas são unidas por condições de contorno periódicas). [8]

Segundo Hauert e Szabó [8], os colaboradores tendem a ser extintos em jogos que consideram a interação aleatória, independente da sua concentração inicial, ou seja, todos tendem a não ganhar nada (não colaborar mutuamente) a fim de reduzir custos individuais. Enquanto isso, se for proposto que um componente só escolhe uma estratégia conforme seus vizinhos, é visto a formação de clusters de cooperadores e de não cooperadores; com isso, os componentes que estão na borda desses espaços, ganham na interação com os vizinhos colaboradores e perdem com a outra interação.

A probabilidade de escolha pela troca (adquirir a mesma tática que o vizinho) é dada pela equação abaixo. As variáveis são: é a performance de um dos vizinhos do sítio (soma dos ganhos e perdas pela matriz payoff), é a performance do sítio, calculada pela interação entre os seus vizinhos da mesma forma que e é a irracionalidade dos componentes. [8]. Dado um número aleatório entre e , se este for menor que a probabilidade o sítio adota a estratégia do vizinho escolhido anteriormente. Assim, quando a probabilidade calculada for igual a 1, qualquer número escolhido resultará na mudança da estratégia.


Esse jogo de quarentena é acoplado ao sistema SIR anteriormente descrito. A única diferença para o SIR sem o jogo é que as probabilidades de um componente se tornar infectado mudam a partir do seu estado de quarentena.

Implementação

Os códigos da simulação foram implementados na linguagem C, para a visualização foi utilizada a linguagem Python. Ambos scripts estão disponíveis no projeto criado no Replit.

Implementação modelo SIR

Fluxograma para a dinâmica SIR

Implementação modelo SIR com quarentena voluntária

Algumas modificações são realizadas a partir do código anterior para adicionar a quarentena voluntária: a probabilidade do indivíduo passar de suscetível a infectado depende da escolha pela quarentena e é adicionada a escolha de se isolar ou não.

A estrutura principal do código é dada pelo laço temporal onde a cada tempo é chamado o modelo SIR e o jogo da quarentena. Antes de entrar no loop é realizada a inicialização do sistema definindo o estado SIR e de quarentena dos indivíduos em vetores distintos e a matriz payoff do jogo. A seguir é possível visualizar o fluxograma para as funções da evolução do SIR e do jogo da quarentena.

Os códigos estão disponíveis No projeto criado no Replit, os arquivos utilizados foram versao_viz_quarentena.c para a dinâmica SIR com quarentena voluntária e mc.h para o suporte com os números aleatórios. O primeiro código gerará três arquivos de saída: outup.txt, contendo a evolução temporal do SIR, output_dinamica_sir.txt, com o vetor de indivíduos contendo o estado SIR de cada um, sendo que cada linha corresponde a um tempo e output_dinamica_loc.txt, com o vetor de indivíduos contendo o estado de quarentena de cada um, sendo que cada linha corresponde a um tempo. Para realizar a visualização, é utilizado o arquivo visualizacao.py que lê os arquivos gerados e faz os gráficos buscados (note, que está separado em blocos por #%%, sendo possível utilizar apenas alguns softwares como Spyder ou Visual Studio); alguns comandos para geração das animações no gnuplot estão comentados ao longo do código e podem ser usados.

Fluxograma para a dinâmica SIR com quarentena
Fluxograma para a quarentena voluntária

Resultados e Discussão

Resultados SIR

Resultados SIR com quarentena voluntária

Na simulação com quarentena voluntária não é utilizado o SIR com a dinâmica dependendo dos vizinhos infectados (ponto para o trabalho futuro). Para os gráficos abaixo mostrados foram utilizadas os seguintes parâmetros:

Simulação Dinâmica SIR Matriz de Payoff
Tempo (passos) Número de indivíduos Estado de infecção inicial
500 3600 100% 0.0 0.3 0.6 1.04 0.0 1.0 0.0 0.1


É utilizado que os indivíduos em isolamento estão distribuídos aleatoriamente; inicialmente é proposto uma relação de 1:1 de estados de quarentena. A dinâmica SIR sem o jogo é realizada definindo que nenhuma pessoa está isolada. Com essas premissas e com os parâmetros os resultados obtidos são apresentados a seguir, neles é possível comparar a simulação com a escolha da quarentena e sem. Define-se que o indivíduo isolado não tem chance de se tronar infectado (), o que não é totalmente verdade, pois existe sempre algum contato das pessoas mesmo que ínfimo.

  • Comparação da evolução entre os suscetíveis na dinâmica SIR e com parte da população quarentenada
  • Comparação da evolução entre os infectados na dinâmica SIR e com parte da população quarentenada
  • Comparação da evolução entre os recuperados na dinâmica SIR e com parte da população quarentenada

Com esses resultados é possível perceber que a quarentena auxilia na diminuição das infecções iniciais, ainda assim, não é vista a formação de uma segunda onda de contaminação com esses parâmetros. Abaixo são mostradas as animações com a evolução da doença e do isolamento no sistema.


  • Evolução do sistema SIR a partir de 50% dos componentes isolados
  • Evolução do sistema SIR a partir de 50% dos componentes isolados


Para entender o efeito do estado inicial de isolamento no modelo, são comparadas as curvas do modelo SIR com quarentena voluntária variando a proporção entre indivíduos quarentenados e não quarentenados. Percebe-se que quando o sistema é iniciado com um total próximo de 80%, existe uma tendência de aumento nos casos após um tempo - por esse motivo será discutido com mais detalhes posteriormente -, com 90% de quarentenados a melhor escolha para os indivíduos é se manter em isolamento. Para os outros valores, percebe-se apenas uma diminuição dos casos conforme a fração de isolados. A porcentagem na legenda é de indivíduos em quarentena.

Evolução da doença dependendo da quantidade de indivíduos inicialmente em isolamento


No gráfico acima, foi possível perceber que em torno de 20% de não isolados um comportamento ondulatório de infecções começa a aparecer - esperado para o modelo SIR com quarentena voluntária [1]. No gráfico a seguir é possível ver a evolução dos suscetíveis, infectados e recuperados para esse caso e, em seguida, é mostrada a evolução da quantidade de indivíduos quarentenados e infectados.

Note que no gráfico abaixo existem dois eixos com a mesma quantidade, isso ocorre porque a grandeza dos quarentenados é muito maior do que as de infectados. No lado esquerdo tem-se os valores da fração da população quarentenada (linha preta) e no direito a fração relacionada aos infectados (linha azul).

Evolução da quantidade de infectados e quarentenados no sistema, iniciando com 80% de isolados
Evolução da dinâmica SIR com quarentena voluntária, iniciando com 80% de isolados

Acima é possível fazer uma relação entre diminuição de componentes em isolamento e infectados.


É feito uma simulação utilizando 18% da população não isolada e os resultados são mais satisfatórios, pois há maior correlação entre isolamento e infecção, como é possível observar no gráfico abaixo. A evolução também pode ser observada na animação em seguida, onde 0 são os indivíduos em quarentena e 1 os sem quarentena. Na animação SIR 2 equivale ao suscetível, 0 é o infectado e 1 são os recuperados. Novamente, note que no gráfico abaixo existem dois eixos com a mesma quantidade, isso ocorre porque a grandeza dos quarentenados é muito maior do que as de infectados. No lado esquerdo tem-se os valores da fração da população quarentenada (linha preta) e no direito a fração relacionada aos infectados (linha azul).

Evolução da quantidade de infectados e quarentenados no sistema, iniciando com 82% de isolados


Para a inicialização com 82% dos indivíduos isolados consegue-se perceber que a infecção se dá nos espaços onde existem mais pessoas fora da quarentena nos primeiros tempos, o resto da população se quarentena e atrasa a sua infecção e de seus vizinhos.


  • Evolução do sistema de quarentena a partir de 82% dos componentes isolados
  • Evolução do sistema SIR a partir de 82% dos componentes isolados




Os resultados obtidos mostram que a quarentena voluntária diminui significativamente o número de infectados na primeira onda, tendência prevista por outras pesquisas e que evita o esgotamento dos serviços de saúde. [9]

Outro comportamento observado nos dados da Covid-19, foi o aparecimento de ondas de contaminação, isto é, uma sucessão de aumentos e diminuições na quantidade de infectados. Foi observado que tanto os parâmetros da matriz de payoff e os da dinâmica SIR quanto o sistema inicial da quarentena, interferem na evolução da doença de maneiras diferentes, expressando tanto comportamentos ondulatórios quanto similares ao SIR normal. Diferentemente do observado pelo método do campo médio, o comportamento ondulatório foi mais sutil, parecendo representar de maneira mais satisfatória os dados observados para o Covid-19.

Próximos Passos

Algumas pendências são deixadas para um futuro trabalho:

  • Fazer a evolução da doença SIR olhando a infecção dos vizinhos
  • Estudar melhor a relação entre parâmetros (SIR e quarentena) e a quantidade inicial de indivíduos isolados
  • Buscar se há diferenças quando a percepção do componente está só no primeiro vizinho e quando ele consegue ver mais o sistema
  • Desenvolver um jogo onde a escolha pela quarentena seja dada pelo estado infectado ou não do vizinho, não pela sua quarentena

Referências

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 AMARAL, Marco; OLIVEIRA, Marcelo de; JAVARONE, Marco, An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics. arXiv:2008.05979v2 [physics.soc-ph] .
  2. SIEGRIST, Michael;BERTH, Angela. Worldviews, trust, and risk perceptions shape public acceptance of COVID-19 public health measures. DOI: https://doi.org/10.1073/pnas.2100411118.
  3. BAVEL, Jay; et al, Using social and behavioural science to support COVID-19 pandemic response. DOI: https://doi.org/10.1038/s41562-020-0884-z .
  4. 4,0 4,1 MCKENDRICK, A.G.; KERMACK, W. O.. Mathematical Theory of Epidemics. Disponível em: https://gallica.bnf.fr/ark:/12148/bpt6k56208r/f728.item.langFR
  5. Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K. (2014). "Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates". Applied Mathematics and Computation. 236: 184–194. arXiv:1403.2160. Bibcode:2014arXiv1403.2160H. doi:10.1016/j.amc.2014.03.030. S2CID 14509477
  6. 6,0 6,1 M.G.Roberts. The pluses and minuses of r 0 . Journal of the Royal Society interface4, 2007.
  7. Beckley, Ross; Weatherspoon, Cametria; Alexander, Michael; Chandler, Marissa; Johnson, Anthony; Batt, Ghan S. (2013). Modeling epidemics with differential equations. Disponível em: http://www.tnstate.edu/mathematics/mathreu/filesreu/GroupProjectSIR.pdf
  8. 8,0 8,1 8,2 8,3 8,4 HAUERT, Christoph; SZABÓ, György. Game theory and physics. DOI: 10.1119/1.18485144 .
  9. MAGENTA, Matheus. Quarentenas funcionam para combater o coronavírus? Veja o que dizem os estudos. BBC News. Disponível em: <https://www.bbc.com/portuguese/internacional-52830618>