Termostato de Nosé-Hoover: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 27: | Linha 27: | ||
<math> \mathcal L = \mathcal K + \mathcal K_s - \mathcal U - \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} - \mathcal U(\bold r) - (N_f + 1)k_BTln(s)</math> | <math> \mathcal L = \mathcal K + \mathcal K_s - \mathcal U - \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} - \mathcal U(\bold r) - (N_f + 1)k_BTln(s)</math> | ||
Como não é explicitamente dependente do tempo: | |||
<math> \mathcal H_N = \mathcal K + \mathcal K_s + \mathcal U + \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} + \mathcal U(\bold r) + (N_f + 1)k_BTln(s)</math> | |||
Como <math> \mathcal H_N </math> se conserva, esse sistema é numericamente estável <ref name=L5> http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf </ref> | |||
== Resultados == | == Resultados == |
Edição das 22h04min de 24 de maio de 2021
Grupo: Gabriel Azevedo, Rafael Abel e Thierre F. Conceição.
Termostato de Nosé-Hoover
O termostato de Nosé-Hoover é um algoritmo utilizado para simulação de dinâmica molecular. Este algoritmo utiliza um ensemble NVT, onde o número de partículas (N), o volume (V) e a temperatura (T) são mantidas constantes. Esse ensemble é relevante quando o sistema em estudo está em contato com um banho térmico[1].
A maneira que o algoritmo de Nosé-Hoover mantém a temperatura constante é a partir da adição de uma variável dinâmica fictícia (um "agente" externo), que atua sobre as velocidades das partículas no sistema, as acelerando ou desacelerando até que estas atinjam a temperatura desejada.
Método
Para entender o termostado de Nóse-Hoover, primeiramente será mostrado o termostato de Nosé[2].
Este termostato atribui coordenadas generalizados adicionais e o seu momento conjugado ao banho térmico. O fator é definido como um fator de escala das velocidades, onde:
E também são definidas as energia potenciais e cinética associadas a como:
e
onde é entendido como a "inércia térmica", ele determina a escala do tempo da flutuação de temperatura.
O Lagrangiano do sistema extendida (consistente das partículas e do banho térmico) então é postulado como:
Como não é explicitamente dependente do tempo:
Como se conserva, esse sistema é numericamente estável [3]
Resultados
Programas Utilizados
Referências
- ↑ https://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf
- ↑ NOSÉ, Shuichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, Vol. 52, No. 2, 255-268
- ↑ http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf