Modelo de Potts 2D: mudanças entre as edições
Ir para navegação
Ir para pesquisar
Linha 7: | Linha 7: | ||
<math>\mathcal{H} = -J\sum_{\langle i,j \rangle}{\delta{(s_i,s_j)}}</math> | <math>\mathcal{H} = -J\sum_{\langle i,j \rangle}{\delta{(s_i,s_j)}}</math> | ||
Este modelo é tido como uma generalização natural do M[http://www.example.com título do link]odelo de Ising |
Edição das 17h28min de 9 de maio de 2021
Modelo de Potts
O "Modelo de Potts de Q-estados" trata de um sistema de rede com N spins interagentes , onde um spin pode assumir um valor inteiro e positivo . Cada spin do sistema está limitado a interagir com outros spins em sua vizinhança e a energia da interação entre dois spins e é dada pelo potencial
onde é a função delta de Kronecker e é a constante de interação entre os spins. Dessa maneira, a interação entre dois spins vizinhos contabiliza um valor de energia ao sistema apenas se . A hamiltoniana do sistema é dada pela soma entre todas as interações entre spins vizinhos:
Este modelo é tido como uma generalização natural do Mtítulo do linkodelo de Ising