Gás de Rede 2D: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 9: | Linha 9: | ||
Onde o somatório é dado entre os quatro vizinhos mais próximos e <math>\epsilon</math> é a constante de interação entre as partículas, para <math>\epsilon \geq 0</math> a interação é atrativa. Por se tratar de uma rede quadrada com <math>L^2</math> sítios, apenas uma parcela da rede é ocupada por partículas, ou seja, possuímos uma densidade constante <math>\rho</math> de partículas. Podemos expressar a condição da densidade constante da forma | Onde o somatório é dado entre os quatro vizinhos mais próximos e <math>\epsilon</math> é a constante de interação entre as partículas, para <math>\epsilon \geq 0</math> a interação é atrativa. Por se tratar de uma rede quadrada com <math>L^2</math> sítios, apenas uma parcela da rede é ocupada por partículas, ou seja, possuímos uma densidade constante <math>\rho</math> de partículas. Podemos expressar a condição da densidade constante da forma | ||
<math>\sum^ | <math>\sum^_{i} \sigma_i = \rho L^2</math> | ||
Fazendo uma mudança de variáveis da forma <math>s_i = 2 \sigma_1 - 1</math> saímos da situação de ocupação e não ocupação de sítios e obtemos variáveis do Modelo de Ising <ref name=ISING> https://fiscomp.if.ufrgs.br/index.php/Ising_2D</ref>, spins Up e Down. A variável <math>s_i</math> assume valor <math>+1</math> (up) quando o sítio esta ocupado por uma partícula e <math>-1</math> quando não está. Aplicando a mudança de variáveis no Hamiltoniano do Gás de Rede obtemos | Fazendo uma mudança de variáveis da forma <math>s_i = 2 \sigma_1 - 1</math> saímos da situação de ocupação e não ocupação de sítios e obtemos variáveis do Modelo de Ising <ref name=ISING> https://fiscomp.if.ufrgs.br/index.php/Ising_2D</ref>, spins Up e Down. A variável <math>s_i</math> assume valor <math>+1</math> (up) quando o sítio esta ocupado por uma partícula e <math>-1</math> quando não está. Aplicando a mudança de variáveis no Hamiltoniano do Gás de Rede obtemos | ||
<math>\mathcal{H} = - \frac{1}{4} \epsilon \ | <math>\mathcal{H} = - \frac{1}{4} \epsilon \sum_{\langle i,j \rangle} (s_i + 1)(s_j + 1)</math> | ||
<math>\mathcal{H} = - \frac{1}{4} \epsilon \sum_{\langle i,j \rangle} s_i s_j - \frac{1}{2} z \epsilon \sum_{\langle i,j \rangle} s_i - \frac{1}{2} z \epsilon L^2 </math> | |||
== Implementação == | |||
== Resultados == | |||
== Programas Utilizados == | |||
== Referências == | == Referências == | ||
<references/> | <references/> |
Edição das 18h34min de 16 de agosto de 2020
EM CONSTRUÇÃO
Gás de Rede
O Modelo do Gás de Rede 2D consiste em um sistema de partículas da forma onde cada sítio da rede pode assumir o valor , ocupado por uma partícula, ou , não ocupado por uma partícula. A energia total do sistema é dada pelo Hamiltoniano do Gás de Rede, descrito pela equação
Onde o somatório é dado entre os quatro vizinhos mais próximos e é a constante de interação entre as partículas, para a interação é atrativa. Por se tratar de uma rede quadrada com sítios, apenas uma parcela da rede é ocupada por partículas, ou seja, possuímos uma densidade constante de partículas. Podemos expressar a condição da densidade constante da forma
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^_{i} \sigma_i = \rho L^2}
Fazendo uma mudança de variáveis da forma saímos da situação de ocupação e não ocupação de sítios e obtemos variáveis do Modelo de Ising [1], spins Up e Down. A variável assume valor (up) quando o sítio esta ocupado por uma partícula e quando não está. Aplicando a mudança de variáveis no Hamiltoniano do Gás de Rede obtemos