Grupo - Conservação do Parâmetro de Ordem: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 1: Linha 1:
==Introdução==
==Introdução==


O modelo de Ising possui características universais que permitem aplicá-lo a situações diversas sendo tão versátil a ponto de descrever desde ferromagnetos até interações sociais. Dentro dessa gama de possibilidades existe o modelo de Conservação do Parâmetro de Ordem (CPO) em que, como o nome indica, mantém-se o parâmetro de ordem constante. No caso de um ferromagneto o parâmetro de ordem é a magnetização, portanto, um modelo de ferromagneto estilo CPO manteria a magnetização constante a cada passo da simulação.  
O modelo de Ising possui características universais que permitem aplicá-lo a situações diversas sendo tão versátil a ponto de descrever desde ferromagnetos até interações sociais. Dentro dessa gama de possibilidades existe o modelo de Conservação do Parâmetro de Ordem (CPO) em que, como o nome indica, mantém-se o parâmetro de ordem constante. No caso de um ferromagneto o parâmetro de ordem é a magnetização, portanto, um modelo de Ising sujeito CPO a grandeza análoga à magnetização se manteria constante a cada passo da simulação.  


Apesar da estrutura matemática muito similar ao modelo de Ising, o modelo de CPO com sua simples condição de conservação do parâmetro de ordem aliado a condições de contorno permite que se modele sistemas marcadamente diferentes do tradicional sistema de ferromagneto tais como o gás de rede onde é possível estudar o comportamento de interfaces vapor-sólido ou vapor-líquido em condições de equilíbrio como por exemplo o equilíbrio entre água líquida e seu vapor ou entre gelo e vapor d'água.
Apesar da estrutura matemática muito similar ao modelo de Ising, o modelo de CPO com sua simples condição de conservação do parâmetro de ordem aliado a condições de contorno permite que se modele sistemas marcadamente diferentes do tradicional sistema de ferromagneto tais como o gás de rede onde é possível estudar o comportamento de interfaces vapor-sólido ou vapor-líquido em condições de equilíbrio como por exemplo o equilíbrio entre água líquida e seu vapor ou entre gelo e vapor d'água.
Linha 7: Linha 7:
===Gás de rede===
===Gás de rede===


O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede uma partícula (átomo) ou sua ausência (vacância). Ao contrário do gás real a coordenada do movimento não é contínua, pois as partículas se movem de maneira discreta somente pelos vértices da rede. Pode-se refinar o modelo de diversas formas tais como incluir inércia ou colisões, no entanto, uma versão simplificada (e simples de simular) desse modelo é suficiente para reproduzir qualitativamente o comportamento de interfaces.
O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede uma partícula (átomo) ou sua ausência (vacância). Ao contrário do gás real a coordenada do movimento não é contínua, pois as partículas se movem de maneira discreta somente pelos vértices da rede.  
Pode-se refinar o modelo de diversas formas:
* Conferindo inércia às partículas
* Alterando a forma da rede (quadrada, hexagonal, fcc, bcc, cúbica)
* Incluindo partículas de tipos diferentes com interações comum a seu respectivo tipo
* Presença e/ou tipos de colisões
 
No entanto, uma versão simplificada (e simples de simular) desse modelo é suficiente para reproduzir qualitativamente o comportamento de interfaces.


==Teoria==
==Teoria==


No modelo simplificado do gás de rede as partículas (pontos da rede) se movem de forma aleatória sob influência térmica e satisfazem as seguintes condições:
No modelo simplificado do gás de rede as partículas (sem inércia), movem-se de forma aleatória sob excitação térmica e satisfazem as seguintes condições:


#O número total de partículas é fixo: nenhuma partícula deixa ou entra no sistema, portanto, caso desapareça a partícula deve reaparecer em outro ponto da rede no mesmo passo de simulação.
#O número total de partículas é fixo: nenhuma partícula deixa ou entra no sistema, portanto, caso desapareça a partícula deve reaparecer em outro ponto da rede no mesmo passo de simulação.
Linha 19: Linha 26:
As forças de atração e repulsão num gás real não possuem alcance de mesma ordem. A repulsão é de curto alcance enquanto a atração é de longo-alcance. Embora o presente modelo trate as partículas como se o alcance de repulsão e atração fossem da mesma ordem, ainda é possível extrair propriedades físicas que tem paralelo com o gás real tais como transições de fase e formato de interfaces.  
As forças de atração e repulsão num gás real não possuem alcance de mesma ordem. A repulsão é de curto alcance enquanto a atração é de longo-alcance. Embora o presente modelo trate as partículas como se o alcance de repulsão e atração fossem da mesma ordem, ainda é possível extrair propriedades físicas que tem paralelo com o gás real tais como transições de fase e formato de interfaces.  


A cada ponto da rede associamos o valor <math>+1</math> se houver uma partícula nesse ponto ou <math>0</math> caso contrário. Representamos essa variável por <math>\sigma_i</math>, ou seja, no iésimo ponto da rede a variável <math>\sigma_i</math> pode assumir apenas os valores <math>+1</math> ou <math>0</math>.
A cada ponto da rede associamos o valor <math>+1</math> se houver uma partícula nesse ponto ou <math>0</math> caso contrário. Representamos essa variável por <math>\sigma_i</math>, ou seja, no iésimo ponto da rede a variável <math>\sigma_i</math> pode assumir apenas os valores <math>+1</math> ou <math>0</math>, ou resumidamente:
 
<math>
\begin{cases}
0, \text{ponto da rede vazio} \\
1, \text{ponto da rede ocupado} \\
\end{cases}
</math>
 
A conservação do número de partículas exige que se tenha:  
A conservação do número de partículas exige que se tenha:  


Linha 65: Linha 80:
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sum_i\sigma_i = \rho N</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sum_i\sigma_i = \rho N</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i(s_i+1) = \rho N</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i(s_i+1) = \rho N</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i s_i = \rho N - \frac{1}{2}\sum_i 1</math>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i s_i = \rho N - \frac{1}{2}\sum_i 1</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i s_i = \rho N - \frac{1}{2}N</math>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}\sum_i s_i = \rho N - \frac{1}{2}N</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sum_i s_i = N(2\rho - 1)</math>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sum_i s_i = N(2\rho - 1)</math>
</div>
</div>
Linha 94: Linha 109:
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>M = \sum_i s_i = N(2\rho - 1)</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>M = \sum_i s_i = N(2\rho - 1)</math></div>


==Transição de Fase==
No entanto, <math>\rho</math> e <math>N</math> devem permanecer constantes durante toda a simução, isso implica que a magnetização também é sempre constante, ou seja, a magneticação é o '''parâmetro de ordem conservado''' nesse sistema fato que dá nome ao método.
 
É vantajoso tratar o modelo de gás de rede sob a perspectiva de um modelo de Ising pois todo o arcabouço de técnicas amplamente conhecidas e extensivamente estudadas para o modelo de Ising podem ser aplicadas.
 
Apesar das similaridades, o gás de rede, como definido, possui muito menos estados válidos pois não é permitido alterar a magnetização do sistema enquanto no modelo de Ising qualquer spin individual pode ser invertido sem restrições pois a magnetização não precisa se manter constante.
 
==Transição de fase==
 
Aproveitando a equivalência estabelecida entre gás de rede e o modelo de Ising sabe-se que o sistema possui uma transição de fase que ocorre a uma temperatura crítica <math>T_c</math>. Rearranjando a densidade de pontos (equivalente agora a spins up) tem-se:
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>2\rho - 1 = \frac{M}{N}</math></div>
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\rho = \frac{1}{2}(1+m)</math></div>
 
No modelo de Ising sabe-se também que abaixo da temperatura crítica existem dois valores de equilíbrio para a magnetização que são <math>+|m|</math> e <math>-|m|</math>, portanto, para favorecer a coexistência de fases tem-se que:
 
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\frac{1}{2}(1-|m|) = \rho_- \le \rho \le \rho_+ = \frac{1}{2}(1+|m|)</math></div>
 
===Coexistência de fase===
 
Para valores de <math>\rho</math> fora do intervalo <math>\rho_- \le \rho \le \rho_+</math> ainda é possível que uma região do sistema favoreça uma das duas densidades preferenciais. Suponha que se tenha <math>\rho < \rho_-</math>. Nesse caso o sistema possui menos partículas do que precisa pra atingir o a densidade <math>\rho_+</math>. Ainda que localmente seja possível o sistema atingir a densidade <math>\rho_+</math> isso leva a uma falta ainda maior de partículas em outras regiões do sistema sendo, portanto, energeticamente custoso. A opção energeticamente mais favorável adotada pelo sistema é distribuir as poucas partículas homegeneamente pela rede. Esse comportamento é observado na simulação.
 
Dessa forma, no caso de <math>J>0</math> o sistema possui duas fases:
* Uma em que <math>\rho\in[\rho_-,\rho_+]</math> se dividindo em dois domínios cada qual favorecendo uma das duas densidades <math>\pm\rho</math>
* E outra em que <math>\rho\not\in[\rho_-,\rho_+]</math> tendo densidade homogênea
 
Com <math>/rho</math> sujeito ao intervalo <math>\frac{1}{2}(1-|m|) \le \rho \le \frac{1}{2}(1+|m|)</math> conclui-se que <math>/rho</math> pode assumir um intervalo menor de valores a medida que <math>|m|</math> diminui. A magnetização diminui sob o aumento da temperatura. Acima da temperatura crítica a <math>|m|=0</math> e portanto o intervalo <math>\frac{1}{2}(1-|m|) \le \rho \le \frac{1}{2}(1+|m|)</math> reduz-se a zero evidenciando que não existe mais um valor de <math>\rho</math> que evite a homogeinização da rede.
 
A discussão acima pode ser apresentada resumidamente pelo diagrama de fases:
 
[[Arquivo:Cop_phase_diagram.png|frame|200px|center|Diagrama de fases do modelo CPO. Fase homogênea para temperaturas além da temperatura crítica e fase coexistente abaixo com densidades preferenciais <math>\rho_+</math> e <math>\rho_-</math>]]
 
Esse comportamento é observado quando se diminui a temperatura de vapor d'agua que passa a formar gotas líquidas que coexistem com o vapor para um intervalo de temperaturas. A fase condensada do gás de rede, no entanto, é mais adequadamente interpretada como um sólido devido a posição fixa das partículas (análogas a moléculas ou átomos) na rede, dessa forma, falamos de interface vapor/sólido ao invés de vapor/líquido.


==Implementação==
==Implementação==

Edição das 16h25min de 24 de janeiro de 2018

Introdução

O modelo de Ising possui características universais que permitem aplicá-lo a situações diversas sendo tão versátil a ponto de descrever desde ferromagnetos até interações sociais. Dentro dessa gama de possibilidades existe o modelo de Conservação do Parâmetro de Ordem (CPO) em que, como o nome indica, mantém-se o parâmetro de ordem constante. No caso de um ferromagneto o parâmetro de ordem é a magnetização, portanto, um modelo de Ising sujeito CPO a grandeza análoga à magnetização se manteria constante a cada passo da simulação.

Apesar da estrutura matemática muito similar ao modelo de Ising, o modelo de CPO com sua simples condição de conservação do parâmetro de ordem aliado a condições de contorno permite que se modele sistemas marcadamente diferentes do tradicional sistema de ferromagneto tais como o gás de rede onde é possível estudar o comportamento de interfaces vapor-sólido ou vapor-líquido em condições de equilíbrio como por exemplo o equilíbrio entre água líquida e seu vapor ou entre gelo e vapor d'água.

Gás de rede

O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede uma partícula (átomo) ou sua ausência (vacância). Ao contrário do gás real a coordenada do movimento não é contínua, pois as partículas se movem de maneira discreta somente pelos vértices da rede. Pode-se refinar o modelo de diversas formas:

  • Conferindo inércia às partículas
  • Alterando a forma da rede (quadrada, hexagonal, fcc, bcc, cúbica)
  • Incluindo partículas de tipos diferentes com interações comum a seu respectivo tipo
  • Presença e/ou tipos de colisões

No entanto, uma versão simplificada (e simples de simular) desse modelo é suficiente para reproduzir qualitativamente o comportamento de interfaces.

Teoria

No modelo simplificado do gás de rede as partículas (sem inércia), movem-se de forma aleatória sob excitação térmica e satisfazem as seguintes condições:

  1. O número total de partículas é fixo: nenhuma partícula deixa ou entra no sistema, portanto, caso desapareça a partícula deve reaparecer em outro ponto da rede no mesmo passo de simulação.
  2. Um ponto da rede pode ser ocupado por uma única partícula ou permanecer vazio (não ocupado). Essa é uma maneira grosseira de assimilar o caráter físico de repulsão do gás real onde partículas não podem interpenetrar-se devido a exclusão de Pauli.
  3. Se duas partículas são primeiras vizinhas uma da outra elas sentem uma atração que é a mesma para qualquer par de partículas. Essa condição modela o efeito de atração entre partículas de um gás real.

As forças de atração e repulsão num gás real não possuem alcance de mesma ordem. A repulsão é de curto alcance enquanto a atração é de longo-alcance. Embora o presente modelo trate as partículas como se o alcance de repulsão e atração fossem da mesma ordem, ainda é possível extrair propriedades físicas que tem paralelo com o gás real tais como transições de fase e formato de interfaces.

A cada ponto da rede associamos o valor se houver uma partícula nesse ponto ou caso contrário. Representamos essa variável por , ou seja, no iésimo ponto da rede a variável pode assumir apenas os valores ou , ou resumidamente:

A conservação do número de partículas exige que se tenha:

Onde é a densidade de partículas e é o número total de partículas, sendo, portanto, o número de pontos ocupados da rede.

O hamiltoniano do sistema é modelado a partir da condição 2 exposta acima em que é especificado que um par de primeiros vizinhos na rede contribui para a diminuição da energia do sistema por uma quantidade :

Onde denota soma sobre todos os pares de primeiros vizinhos da rede.

Equivalência ao modelo de Ising

Para mostrar a equivalência com o modelo de Ising definimos a seguinte variável:

Essa nova variável é nada mais do que o spin no modelo de Ising para um ferromagneto assumindo os valores:

  • quando , ou seja, posição ocupada por partícula; ou
  • quando , ou seja, posição não ocupada

Em termos da variável de spin é dada por:

Substituindo no Hamiltoniano tem-se:

Seja o número de coordenação da rede, ou seja, o número de primeiros vizinhos ( para rede quadrada e para rede cúbica simples). Para uma dada rede existem possíveis pares distintos

Pode-se simplificar esssa expressão com base nas seguintes observações:

  • Os somatórios em e são idênticos exceto pelo índice.
  • A soma sobre pares de vizinhos é equivalente a somar vezes sobre o número de pontos da rede:
  • pode ser escrito em termos das constantes e assim como ocorre com

Dessa forma o Hamiltoniano se reduz a:

Seja J = e observando que é uma constante pois todos seus termos são constantes, chegamos na equivalência com o Hamiltoniano do modelo de Ising na ausência de campo magnético:

O valor esperado de qualquer quantidade física não é alterado pela adição de uma constante ao hamiltoniano:

Conservação do parâmetro de ordem

A magnetização do sistema é nada mais do que a soma de spins que já calculamos acima:

No entanto, e devem permanecer constantes durante toda a simução, isso implica que a magnetização também é sempre constante, ou seja, a magneticação é o parâmetro de ordem conservado nesse sistema fato que dá nome ao método.

É vantajoso tratar o modelo de gás de rede sob a perspectiva de um modelo de Ising pois todo o arcabouço de técnicas amplamente conhecidas e extensivamente estudadas para o modelo de Ising podem ser aplicadas.

Apesar das similaridades, o gás de rede, como definido, possui muito menos estados válidos pois não é permitido alterar a magnetização do sistema enquanto no modelo de Ising qualquer spin individual pode ser invertido sem restrições pois a magnetização não precisa se manter constante.

Transição de fase

Aproveitando a equivalência estabelecida entre gás de rede e o modelo de Ising sabe-se que o sistema possui uma transição de fase que ocorre a uma temperatura crítica . Rearranjando a densidade de pontos (equivalente agora a spins up) tem-se:

No modelo de Ising sabe-se também que abaixo da temperatura crítica existem dois valores de equilíbrio para a magnetização que são e , portanto, para favorecer a coexistência de fases tem-se que:

Coexistência de fase

Para valores de fora do intervalo ainda é possível que uma região do sistema favoreça uma das duas densidades preferenciais. Suponha que se tenha . Nesse caso o sistema possui menos partículas do que precisa pra atingir o a densidade . Ainda que localmente seja possível o sistema atingir a densidade isso leva a uma falta ainda maior de partículas em outras regiões do sistema sendo, portanto, energeticamente custoso. A opção energeticamente mais favorável adotada pelo sistema é distribuir as poucas partículas homegeneamente pela rede. Esse comportamento é observado na simulação.

Dessa forma, no caso de o sistema possui duas fases:

  • Uma em que se dividindo em dois domínios cada qual favorecendo uma das duas densidades
  • E outra em que tendo densidade homogênea

Com sujeito ao intervalo conclui-se que pode assumir um intervalo menor de valores a medida que diminui. A magnetização diminui sob o aumento da temperatura. Acima da temperatura crítica a e portanto o intervalo reduz-se a zero evidenciando que não existe mais um valor de que evite a homogeinização da rede.

A discussão acima pode ser apresentada resumidamente pelo diagrama de fases:

Diagrama de fases do modelo CPO. Fase homogênea para temperaturas além da temperatura crítica e fase coexistente abaixo com densidades preferenciais e

Esse comportamento é observado quando se diminui a temperatura de vapor d'agua que passa a formar gotas líquidas que coexistem com o vapor para um intervalo de temperaturas. A fase condensada do gás de rede, no entanto, é mais adequadamente interpretada como um sólido devido a posição fixa das partículas (análogas a moléculas ou átomos) na rede, dessa forma, falamos de interface vapor/sólido ao invés de vapor/líquido.

Implementação

Equilíbrio