Grupo - Conservação do Parâmetro de Ordem: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
==Introdução== | ==Introdução== | ||
O modelo de Ising possui características universais que permitem | O modelo de Ising possui características universais que permitem aplicá-lo a situações diversas sendo tão versátil a ponto de descrever desde ferromagnetos até interações sociais. Dentro dessa gama de possibilidades existe o modelo de Conservação do Parâmetro de Ordem (CPO) em que, como o nome indica, mantém-se o parâmetro de ordem constante. No caso de um ferromagneto o parâmetro de ordem é a magnetização, portanto, um modelo de ferromagneto estilo CPO manteria a magnetização constante a cada passo da simulação. | ||
Apesar da estrutura matemática muito similar ao modelo de Ising, o modelo de CPO com sua simples condição de conservação do parâmetro de ordem aliado a condições de contorno permite que se modele sistemas marcadamente diferentes do tradicional sistema de ferromagneto tais como o gás de rede onde é possível estudar o comportamento de interfaces vapor-sólido ou vapor-líquido em condições de equilíbrio como por exemplo o equilíbrio entre água líquida e seu vapor ou entre gelo e vapor d'água. | |||
O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede | ===Gás de rede=== | ||
O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede uma partícula (átomo) ou sua ausência (vacância). Ao contrário do gás real a coordenada do movimento não é contínua, pois as partículas se movem de maneira discreta somente pelos vértices da rede. Pode-se refinar o modelo de diversas formas tais como incluir inércia ou colisões, no entanto, uma versão simplificada (e simples de simular) desse modelo é suficiente para reproduzir qualitativamente o comportamento de interfaces. | |||
==Teoria== | |||
No modelo simplificado do gás de rede as partículas (pontos da rede) se movem de forma aleatória sob influência térmica e satisfazem as seguintes condições: | |||
#O número total de partículas é fixo: nenhuma partícula deixa ou entra no sistema, portanto, caso desapareça a partícula deve reaparecer em outro ponto da rede no mesmo passo de simulação. | |||
#Um ponto da rede pode ser ocupado por uma única partícula ou permanecer vazio (não ocupado). Essa é uma maneira grosseira de assimilar o caráter físico de repulsão do gás real onde partículas não podem interpenetrar-se devido a exclusão de Pauli. | |||
#Se duas partículas são primeiras vizinhas uma da outra elas sentem uma atração <math>\epsilon</math> que é a mesma para qualquer par de partículas. Essa condição modela o efeito de atração entre partículas de um gás real. | |||
As forças de atração e repulsão num gás real não possuem alcance de mesma ordem. A repulsão é de curto alcance enquanto a atração é de longo-alcance. Embora o presente modelo trate as partículas como se o alcance de repulsão e atração fossem da mesma ordem, ainda é possível extrair propriedades físicas que tem paralelo com o gás real tais como transições de fase e formato de interfaces. | |||
A cada ponto da rede associamos o valor <math>+1</math> se houver uma partícula nesse ponto ou <math>0</math> caso contrário. Representamos essa variável por <math>\sigma_i</math>, ou seja, no iésimo ponto da rede a variável <math>\sigma_i</math> pode assumir apenas os valores <math>+1</math> ou <math>0</math>. | |||
A conservação do número de partículas exige que se tenha: | |||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sum\sigma_i = \rho N</math> </div> | |||
Onde <math>\rho</math> é a densidade de partículas e <math>N</math> é o número total de partículas, sendo, portanto, <math>\rho N</math> o número de pontos ocupados da rede. | |||
O hamiltoniano do sistema é modelado a partir da condição 2 exposta acima em que é especificado que um par de primeiros vizinhos na rede contribui para a diminuição da energia do sistema por uma quantidade <math>\epsilon</math>: | |||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>H = -\epsilon\sum_{<ij>}\sigma_i\sigma_j</math> </div> | |||
===Equivalência com o modelo de Ising=== | |||
Para mostrar a equivalência com o modelo de Ising definimos a seguinte variável: | |||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>s_i = 2\sigma_i-1</math> </div> | |||
Essa nova variável é nada mais do que o spin no modelo de Ising para um ferromagneto assumindo os valores: | |||
* <math>+1</math> quando <math>\sigma_i = +1</math>, ou seja, posição ocupada por partícula; ou | |||
* <math>-1</math> quando <math>\sigma_i = 0</math>, ou seja, posição não ocupada | |||
Em termos da variável de spin <math>\sigma_i</math> é dada por: | |||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>\sigma_i = \frac{1}{2}(s_i+1)</math> </div> | |||
Substituindo no Hamiltoniano tem-se: | |||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math>H = -\frac{1}{4}\epsilon\sum_{<ij>}(s_i+1)(s_j+1)</math> </div> | |||
==Implementação== | |||
==Equilíbrio== |
Edição das 14h01min de 24 de janeiro de 2018
Introdução
O modelo de Ising possui características universais que permitem aplicá-lo a situações diversas sendo tão versátil a ponto de descrever desde ferromagnetos até interações sociais. Dentro dessa gama de possibilidades existe o modelo de Conservação do Parâmetro de Ordem (CPO) em que, como o nome indica, mantém-se o parâmetro de ordem constante. No caso de um ferromagneto o parâmetro de ordem é a magnetização, portanto, um modelo de ferromagneto estilo CPO manteria a magnetização constante a cada passo da simulação.
Apesar da estrutura matemática muito similar ao modelo de Ising, o modelo de CPO com sua simples condição de conservação do parâmetro de ordem aliado a condições de contorno permite que se modele sistemas marcadamente diferentes do tradicional sistema de ferromagneto tais como o gás de rede onde é possível estudar o comportamento de interfaces vapor-sólido ou vapor-líquido em condições de equilíbrio como por exemplo o equilíbrio entre água líquida e seu vapor ou entre gelo e vapor d'água.
Gás de rede
O gás de rede é um modelo simplificado de um gás real onde se associa a cada ponto da rede uma partícula (átomo) ou sua ausência (vacância). Ao contrário do gás real a coordenada do movimento não é contínua, pois as partículas se movem de maneira discreta somente pelos vértices da rede. Pode-se refinar o modelo de diversas formas tais como incluir inércia ou colisões, no entanto, uma versão simplificada (e simples de simular) desse modelo é suficiente para reproduzir qualitativamente o comportamento de interfaces.
Teoria
No modelo simplificado do gás de rede as partículas (pontos da rede) se movem de forma aleatória sob influência térmica e satisfazem as seguintes condições:
- O número total de partículas é fixo: nenhuma partícula deixa ou entra no sistema, portanto, caso desapareça a partícula deve reaparecer em outro ponto da rede no mesmo passo de simulação.
- Um ponto da rede pode ser ocupado por uma única partícula ou permanecer vazio (não ocupado). Essa é uma maneira grosseira de assimilar o caráter físico de repulsão do gás real onde partículas não podem interpenetrar-se devido a exclusão de Pauli.
- Se duas partículas são primeiras vizinhas uma da outra elas sentem uma atração que é a mesma para qualquer par de partículas. Essa condição modela o efeito de atração entre partículas de um gás real.
As forças de atração e repulsão num gás real não possuem alcance de mesma ordem. A repulsão é de curto alcance enquanto a atração é de longo-alcance. Embora o presente modelo trate as partículas como se o alcance de repulsão e atração fossem da mesma ordem, ainda é possível extrair propriedades físicas que tem paralelo com o gás real tais como transições de fase e formato de interfaces.
A cada ponto da rede associamos o valor se houver uma partícula nesse ponto ou caso contrário. Representamos essa variável por , ou seja, no iésimo ponto da rede a variável pode assumir apenas os valores ou . A conservação do número de partículas exige que se tenha:
Onde é a densidade de partículas e é o número total de partículas, sendo, portanto, o número de pontos ocupados da rede.
O hamiltoniano do sistema é modelado a partir da condição 2 exposta acima em que é especificado que um par de primeiros vizinhos na rede contribui para a diminuição da energia do sistema por uma quantidade :
Equivalência com o modelo de Ising
Para mostrar a equivalência com o modelo de Ising definimos a seguinte variável:
Essa nova variável é nada mais do que o spin no modelo de Ising para um ferromagneto assumindo os valores:
- quando , ou seja, posição ocupada por partícula; ou
- quando , ou seja, posição não ocupada
Em termos da variável de spin é dada por:
Substituindo no Hamiltoniano tem-se: