Grupo - Dilema Do Prisioneiro/Programas: mudanças entre as edições
Ir para navegação
Ir para pesquisar
(Criou página com '==Programas== Spatial_PD.c <source> #include<stdio.h> #include<math.h> #include <stdlib.h> #include <time.h> //Tamanho da população da matriz n x n #define n_ 50 double su...') |
|||
Linha 1: | Linha 1: | ||
==Programas== | ==Programas== | ||
Non_Spatial_PD.c | |||
<source> | |||
#include<stdio.h> | |||
#include<math.h> | |||
#include <stdlib.h> | |||
#include <time.h> | |||
double sum_array(int array[],int n); | |||
void main() | |||
{ | |||
srand( (unsigned) time(NULL)); | |||
FILE *arq; | |||
arq = fopen("FreqCoop.txt","w+"); | |||
double b,c,R,T,S,P,gen_num,freq_coop,num_compet; | |||
double payoff_matrix[2][2],alpha; | |||
int i,n,j; | |||
n = 1000; | |||
double w,p1,p2; | |||
int pop[n],samples[4]; | |||
double sum = 0; | |||
b = 2; | |||
c = 1; | |||
gen_num = 50; | |||
freq_coop = 0.5 ; | |||
num_compet = gen_num * n; | |||
double ratio = c / (b-c); | |||
// Prisoner's dilemma (PD): ( R, T, S, P ) = ( b-c, b, -c, 0 ) | |||
//reward | |||
R = b-c; | |||
//temptation | |||
T = b; | |||
//sucker's payoff | |||
S = -c; | |||
//punishment | |||
P = 0; | |||
payoff_matrix[0][0] = P; | |||
payoff_matrix[0][1] = T; | |||
payoff_matrix[1][0] = S; | |||
payoff_matrix[1][1] = R; | |||
//α = max(R, T, S, P) − min(R, T, S, P), e | |||
alpha = T-S; | |||
// 0 for defectors | |||
for(i = 0; i < n; i++) | |||
{ | |||
double temp = rand() / (RAND_MAX + 1.0); | |||
if(temp < freq_coop) | |||
pop[i] = 1; | |||
else | |||
pop[i] = 0; | |||
} | |||
sum = sum_array(pop,n)/(double)n; | |||
fprintf(arq,"%d %lf\n",0,sum); | |||
for(i = 1; i < num_compet; i++) | |||
{ | |||
samples[0] = n * rand() / (RAND_MAX + 1.0); | |||
samples[1] = n * rand() / (RAND_MAX + 1.0); | |||
samples[2] = n * rand() / (RAND_MAX + 1.0); | |||
samples[3] = n * rand() / (RAND_MAX + 1.0); | |||
p1 = payoff_matrix[pop[samples[0]]][pop[samples[1]]]; | |||
p2 = payoff_matrix[pop[samples[2]]][pop[samples[3]]]; | |||
w = (p2-p1) / alpha; | |||
if(w <= 0) | |||
w = 0; | |||
if(w > (rand() / (RAND_MAX + 1.0) )) | |||
{ | |||
pop[samples[0]] = pop[samples[2]]; | |||
} | |||
sum = sum_array(pop,n)/(double)n; | |||
fprintf(arq,"%d %lf\n",i,sum); | |||
} | |||
} | |||
double sum_array(int array[],int n) | |||
{ | |||
double sum = 0; | |||
for(int j = 0; j < n; j++) | |||
{ | |||
sum += array[j]; | |||
} | |||
return sum; | |||
} | |||
</source> | |||
Spatial_PD.c | Spatial_PD.c | ||
<source> | <source> |
Edição atual tal como às 18h31min de 20 de janeiro de 2018
Programas
Non_Spatial_PD.c
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
#include <time.h>
double sum_array(int array[],int n);
void main()
{
srand( (unsigned) time(NULL));
FILE *arq;
arq = fopen("FreqCoop.txt","w+");
double b,c,R,T,S,P,gen_num,freq_coop,num_compet;
double payoff_matrix[2][2],alpha;
int i,n,j;
n = 1000;
double w,p1,p2;
int pop[n],samples[4];
double sum = 0;
b = 2;
c = 1;
gen_num = 50;
freq_coop = 0.5 ;
num_compet = gen_num * n;
double ratio = c / (b-c);
// Prisoner's dilemma (PD): ( R, T, S, P ) = ( b-c, b, -c, 0 )
//reward
R = b-c;
//temptation
T = b;
//sucker's payoff
S = -c;
//punishment
P = 0;
payoff_matrix[0][0] = P;
payoff_matrix[0][1] = T;
payoff_matrix[1][0] = S;
payoff_matrix[1][1] = R;
//α = max(R, T, S, P) − min(R, T, S, P), e
alpha = T-S;
// 0 for defectors
for(i = 0; i < n; i++)
{
double temp = rand() / (RAND_MAX + 1.0);
if(temp < freq_coop)
pop[i] = 1;
else
pop[i] = 0;
}
sum = sum_array(pop,n)/(double)n;
fprintf(arq,"%d %lf\n",0,sum);
for(i = 1; i < num_compet; i++)
{
samples[0] = n * rand() / (RAND_MAX + 1.0);
samples[1] = n * rand() / (RAND_MAX + 1.0);
samples[2] = n * rand() / (RAND_MAX + 1.0);
samples[3] = n * rand() / (RAND_MAX + 1.0);
p1 = payoff_matrix[pop[samples[0]]][pop[samples[1]]];
p2 = payoff_matrix[pop[samples[2]]][pop[samples[3]]];
w = (p2-p1) / alpha;
if(w <= 0)
w = 0;
if(w > (rand() / (RAND_MAX + 1.0) ))
{
pop[samples[0]] = pop[samples[2]];
}
sum = sum_array(pop,n)/(double)n;
fprintf(arq,"%d %lf\n",i,sum);
}
}
double sum_array(int array[],int n)
{
double sum = 0;
for(int j = 0; j < n; j++)
{
sum += array[j];
}
return sum;
}
Spatial_PD.c
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
#include <time.h>
//Tamanho da população da matriz n x n
#define n_ 50
double sum_matrix(int matrix[][n_],int n);
double fermi_dirac(double p1, double p2, double k);
double PD_DILEMMA(double b, double c, double k, int n, int gen_num, double freq_coop,double ratio);
void main()
{
double b,c,k,freq_coop;
int n,gen_num;
FILE *arq;
arq = fopen("results.txt","w+");
k = 0.1;
n = n_;
//Beneficio em cooperar
b = 2;
//Custo em cooperar
c = 1;
//Numero de geracoes
gen_num = 1000;
//Frequencia de cooperadores inicialmente
freq_coop = 0.5;
double ratio = c / (b-c);
printf("%lf\n", ratio);
double media = PD_DILEMMA(b,c,k,n,gen_num,freq_coop,ratio);
printf("%lf\n",media);
}
double PD_DILEMMA(double b, double c, double k, int n, int gen_num, double freq_coop,double ratio)
{
srand( (unsigned) time(NULL));
char filename1[64],filename2[64],filename3[64];
sprintf(filename1, "COOP_FREQ_B_%.2lf__C_%.2lf.txt", b,c);
sprintf(filename2, "INITIAL_MATRIX_B_%.2lf__C_%.2lf.txt", b,c);
sprintf(filename3, "FINAL_MATRIX_B_%.2lf__C_%.2lf.txt", b,c);
FILE *arq,*arq2,*arq3;
arq = fopen(filename1,"w+");
arq2 = fopen(filename2,"w+");
arq3 = fopen(filename3,"w+");
double R,T,S,P,num_compet;
double payoff_matrix[2][2];
int i,j;
double w,p1,p2;
int pop[n][n];
double sum = 0,sum2=0;
num_compet = gen_num * n;
//reward
R = b-c;
//temptation
T = b;
//sucker's payoff
S = -c;
//punishment
P = 0;
payoff_matrix[0][0] = P;
payoff_matrix[0][1] = T;
payoff_matrix[1][0] = S;
payoff_matrix[1][1] = R;
// 0 for defectors
for(i = 0; i < n; i++)
{
for(j = 0; j < n; j++)
{
double temp = rand() / (RAND_MAX + 1.0);
if(temp < freq_coop)
pop[i][j] = 1;
else
pop[i][j] = 0;
}
}
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
fprintf(arq2,"%d ",pop[i][j]);
}
fprintf(arq2,"\n");
}
fclose(arq2);
sum = sum_matrix(pop,n)/(double)n;
fprintf(arq,"%d %lf\n",0,sum);
for(i = 1; i <= num_compet; i++)
{
int x[2],y[2];
x[0] = (n) * rand() / (RAND_MAX + 1.0) ;
x[1] = (n) * rand() / (RAND_MAX + 1.0) ;
int vizin[4][2];
if(x[0] == 0)
{
vizin[0][0] = n-1;
vizin[1][0] = x[0]+1;
vizin[2][0] = x[0];
vizin[3][0] = x[0];
}
else if(x[0] == n-1)
{
vizin[0][0] = x[0]-1;
vizin[1][0] = 0;
vizin[2][0] = x[0];
vizin[3][0] = x[0];
}
else
{
vizin[0][0] = x[0]-1;
vizin[1][0] = x[0]+1;
vizin[2][0] = x[0];
vizin[3][0] = x[0];
}
////////
if(x[1] == 0)
{
vizin[0][1] = x[1];
vizin[1][1] = x[1];
vizin[2][1] = n-1;
vizin[3][1] = x[1]+1;
}
else if(x[1] == n-1)
{
vizin[0][1] = x[1];
vizin[1][1] = x[1];
vizin[2][1] = x[1]-1;
vizin[3][1] = 0;
}
else
{
vizin[0][1] = x[1];
vizin[1][1] = x[1];
vizin[2][1] = x[1]-1;
vizin[3][1] = x[1]+1;
}
p1=0;
for(int l = 0; l < 4; l++)
{
p1 += payoff_matrix[pop[x[0]][x[1]]][pop[vizin[l][0]][vizin[l][1]]];
}
int temp = 4 * rand() / (RAND_MAX + 1.0);
y[0] = vizin[temp][0];
y[1] = vizin[temp][1];
if(y[0] == 0)
{
vizin[0][0] = n-1;
vizin[1][0] = y[0]+1;
vizin[2][0] = y[0];
vizin[3][0] = y[0];
}
else if(y[0] == n-1)
{
vizin[0][0] = y[0]-1;
vizin[1][0] = 0;
vizin[2][0] = y[0];
vizin[3][0] = y[0];
}
else
{
vizin[0][0] = y[0]-1;
vizin[1][0] = y[0]+1;
vizin[2][0] = y[0];
vizin[3][0] = y[0];
}
////////
if(y[1] == 0)
{
vizin[0][1] = y[1];
vizin[1][1] = y[1];
vizin[2][1] = n-1;
vizin[3][1] = y[1]+1;
}
else if(y[0] == n-1)
{
vizin[0][1] = y[1];
vizin[1][1] = y[1];
vizin[2][1] = y[1]-1;
vizin[3][1] = 0;
}
else
{
vizin[0][1] = y[1];
vizin[1][1] = y[1];
vizin[2][1] = y[1]-1;
vizin[3][1] = y[1]+1;
}
p2=0;
for(int l = 0; l < 4; l++)
{
p2 += payoff_matrix[pop[y[0]][y[1]]][pop[vizin[l][0]][vizin[l][1]]];
}
//Competir para ver se p1 assume a estrategia de p2
w = fermi_dirac(p1, p2, k);
if(w >= (rand() / (RAND_MAX + 1.0) ))
{
pop[x[0]][x[1]] = pop[y[0]][y[1]];
}
sum = sum_matrix(pop,n)/(double)n;
fprintf(arq,"%d %lf\n",i,sum);
sum2+=sum;
}
fclose(arq);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
fprintf(arq3,"%d ",pop[i][j]);
}
fprintf(arq3,"\n");
}
fclose(arq3);
return (sum2/100.);
}
double sum_matrix(int matrix[][n_],int n)
{
double sum = 0;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
sum += matrix[i][j];
}
}
return sum;
}
double fermi_dirac(double p1, double p2, double k)
{
double f;
f = 1.0 / (1.0 + exp((p1 - p2) / k));
return f;
}