Equação de Klein-Gordon: mudanças entre as edições
| Linha 57: | Linha 57: | ||
<math>\psi_{i-1}^n = A^n e^{i k (i-1) \Delta x} = A^n e^{i k i \Delta x} e^{-i k \Delta x}</math> | <math>\psi_{i-1}^n = A^n e^{i k (i-1) \Delta x} = A^n e^{i k i \Delta x} e^{-i k \Delta x}</math> | ||
Usamos a identidade <math> e^{i k \Delta x} + e^{-i k \Delta x} = 2 \cos(k \Delta x) </math>: | Usamos a identidade <math> e^{i k \Delta x} + e^{-i k \Delta x} = 2 \cos(k \Delta x) </math>: | ||
<math> A^{n+1} = 2A^n - A^{n-1} + \alpha^2 \left[ 2 \cos(k \Delta x) - 2 \right] A^n - \beta^2 A^n </math> | <math> A^{n+1} = 2A^n - A^{n-1} + \alpha^2 \left[ 2 \cos(k \Delta x) - 2 \right] A^n - \beta^2 A^n </math> | ||
Fatoramos: | Fatoramos: | ||
| Linha 93: | Linha 89: | ||
O caso crítico ocorre para o maior valor de <math>cos(k \Delta x)</math>, que é <math>cos(k \Delta x) = 1</math>, e o menor valor, <math>cos(k \Delta x) = -1</math>: | O caso crítico ocorre para o maior valor de <math>cos(k \Delta x)</math>, que é <math>cos(k \Delta x) = 1</math>, e o menor valor, <math>cos(k \Delta x) = -1</math>: | ||
<math>cos(k \Delta x) = 1 </math>: | <math>cos(k \Delta x) = 1 </math>: | ||
| Linha 106: | Linha 101: | ||
<math> (2 - \beta^2)^2 - 4 \leq 0 </math>. | <math> (2 - \beta^2)^2 - 4 \leq 0 </math>. | ||
<math> \beta^2 \leq 2 </math>. | <math> \beta^2 \leq 2 </math>. | ||
Para <math> cos(k \Delta x) = -1</math>: | Para <math> cos(k \Delta x) = -1</math>: | ||
| Linha 125: | Linha 118: | ||
<math> 4\alpha^2 + \beta^2 \leq 4 </math>. | <math> 4\alpha^2 + \beta^2 \leq 4 </math>. | ||
A condição de estabilidade combinada é: | A condição de estabilidade combinada é: | ||
<math> 4\alpha^2 + \beta^2 \leq 4 \quad \text{e} \quad \beta^2 \leq 2 </math>. | <math> 4\alpha^2 + \beta^2 \leq 4 \quad \text{e} \quad \beta^2 \leq 2 </math>. | ||
Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método. | Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método. | ||
Edição das 20h26min de 5 de janeiro de 2025
INTRODUÇÃO
A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:
onde é chamado operador de d'Alambert.
Abrindo a equação, é obtido:
(em uma dimensão)
MÉTODO DAS DIFERENÇAS FINITAS
O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver EDPs. Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente. Os primeiros passos para utilizar o método é fazer a discretização no tempo e no espaço. Para uma equação no tempo você discretiza o tempo em intervalos criando uma sequência de pontos . Para uma equação no espaço você discretiza o espaço em intervalos criando uma sequência de pontos . Depois de discretizar o espaço e o tempo, as derivadas contínuas são aproximadas por diferenças finitas. Isso envolve substituir as derivadas por aproximações baseadas nos valores de uma função nos pontos discretos:
e para o tempo.
para o espaço.
Na equação de Klein-Gordon, escrevemos desta o método das diferenças finitas:
ou seja:
isso nos leva a equação final:
chamarei e
portanto,
ou, mais usualmente:
ESTABILIDADE
Para analisar a estabilidade do método utilizaremos os Modos de Furrier.
.
sendo o Modo de Furrier.
Substituímos , e na equação:
Usamos a identidade :
Fatoramos:
A relação de recorrência é:
onde
.
A equação característica associada é:
onde são as raízes que representam o fator de amplificação .
Para que o método seja estável, as raízes devem satisfazer . Isso é garantido se o discriminante da equação característica satisfizer:
.
Substituímos :
.
O caso crítico ocorre para o maior valor de , que é , e o menor valor, :
:
.
Isso simplifica para:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 2 - \beta^2 }
Para estabilidade:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2 - \beta^2)^2 - 4 \leq 0 } .
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta^2 \leq 2 } .
Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle cos(k \Delta x) = -1} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 2 - 2\alpha^2 - \beta^2 - 2\alpha^2} .
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 2 - 4\alpha^2 - \beta^2 } .
Para estabilidade:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2 - 4\alpha^2 - \beta^2)^2 - 4 \leq 0 } .
Após expandir:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\alpha^2 + \beta^2 \leq 4 } .
A condição de estabilidade combinada é:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\alpha^2 + \beta^2 \leq 4 \quad \text{e} \quad \beta^2 \leq 2 } .
Essas desigualdades controlam os passos de tempo e espaço, garantindo a estabilidade do método.