Equação de Klein-Gordon: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 14: Linha 14:


== MÉTODO DAS DIFERENÇAS FINITAS ==
== MÉTODO DAS DIFERENÇAS FINITAS ==
O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver equações diferenciais parciais (EDPs) e equações diferenciais ordinárias (EDOs). Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente.
Aqui está um resumo de como o método das diferenças finitas funciona:


<math>\frac{\partial^2 \psi(x,t)}{\partial t^2} \approx \frac{\psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t)}{(\Delta t)^2}</math>
<math>\frac{\partial^2 \psi(x,t)}{\partial t^2} \approx \frac{\psi(x,t+\Delta t) - 2\psi(x,t) + \psi(x,t-\Delta t)}{(\Delta t)^2}</math>

Edição das 17h10min de 5 de janeiro de 2025

INTRODUÇÃO

A equação de Klein-Gordon é uma das equações fundamentais na teoria quântica relativística. Ela descreve partículas escalares (partículas sem spin, como os mésons, em seu modelo básico) e é uma extensão relativística da equação de Schrödinger, incorporando a relação de energia relativística de Einstein . A equação é nomeada em homenagem a Oskar Klein e Walter Gordon, que a formularam independentemente. De maneira geral, a equação pode ser escrita como:


onde é chamado operador de d'Alambert.

Abrindo a equação, é obtido:

(em uma dimensão)

MÉTODO DAS DIFERENÇAS FINITAS

O método das diferenças finitas é uma técnica numérica amplamente utilizada para resolver equações diferenciais parciais (EDPs) e equações diferenciais ordinárias (EDOs). Ele envolve a discretização das variáveis contínuas (geralmente no tempo ou no espaço), transformando as equações diferenciais em sistemas algébricos que podem ser resolvidos numericamente.

Aqui está um resumo de como o método das diferenças finitas funciona:

ou seja:

isso nos leva a equação final:

chamarei e