Equação de Lotka-Volterra Competitiva Estocástica: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 22: Linha 22:
== Equações para Três Populações ==
== Equações para Três Populações ==


<center>
<math>
\frac{dx_1}{dt} = r_1x_1\left(1 - \left(\frac{x_1 + \alpha_{12}x_2 + \alpha_{13}x_3}{K_1} \right)\right)</math>
</center>
<center>
<math>
\frac{dx_2}{dt} = r_2x_2\left(1 - \left(\frac{x_2 + \alpha_{21}x_1 + \alpha_{23}x_3}{K_2} \right)\right)</math>
</center>
<center>
<math>
\frac{dx_3}{dt} = r_3x_3\left(1 - \left(\frac{x_3 + \alpha_{31}x_1 + \alpha_{32}x_2}{K_1} \right)\right)</math>
</center>






== Equações para N Populações ==
== Equações para N Populações ==

Edição das 16h13min de 25 de agosto de 2024

As Equações de Lotka-Volterra fornecem um modelo para a previsão de sistemas biológicos considerando diversas relações entre populações. Exploraremos no vigente trabalho a relação de competitividade. Dividiremos, para tanto, o trabalho em três partes principais, considerando duas e três populações, mostrando os gráficos de evolução temporal do número de indivíduos de cada espécie e os espaços de fase, e generalizando para N populações.

Equação de Fokker-Planck

Equações para Duas Populações

O modelo logístico utilizado para duas espécies disputando um território pode ser descrito pelo seguinte par de equações:

com e sendo as duas populações consideradas, e , o crescimento inerente per-capita, e , a capacidade de carga e e , o efeito que a espécie um tem na espécie dois e vice-versa.


Equações para Três Populações


Equações para N Populações