Equação de Liouville-Bratu-Gelfand: mudanças entre as edições
(Teste) |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
Na matemática, a Equação Liouville–Bratu–Gelfand or Equação de Liouville é uma equação de Poisson não linear, nomeada em homenagem aos matemáticos Joseph Liouville, Gheorghe Bratu e Israel Gelfand, que é descrita da seguinte forma | |||
∇2ψ+λeψ=0 | |||
Essa equação aparece em problemas de fuga térmica, como na teoria de Frank-Kamenetskii, e na astrofísica, por exemplo, na equação Emden–Chandrasekhar. Esta equação pode descrever a carga espacial de eletricidade em torno de um fio brilhante ou até mesmo uma nebulosa planetária. | |||
A solução de Liouville | |||
In two dimension with Cartesian Coordinates | |||
(x,y) | |||
, Joseph Liouville proposed a solution in 1853 as | |||
λeψ(u2+v2+1)2=2[(∂u∂x)2+(∂u∂y)2] | |||
where | |||
f(z)=u+iv | |||
is an arbitrary analytic function with | |||
z=x+iy | |||
. In 1915, G.W. Walker found a solution by assuming a form for | |||
f(z) | |||
. If | |||
r2=x2+y2 | |||
, then Walker's solution is | |||
8e−ψ=λ[(ra)n+(ar)n]2 | |||
where | |||
a | |||
is some finite radius. This solution decays at infinity for any | |||
n | |||
, but becomes infinite at the origin for | |||
n<1 | |||
, becomes finite at the origin for | |||
n=1 | |||
and becomes zero at the origin for | |||
n>1 | |||
. Walker also proposed two more solutions in his 1915 paper. | |||
Radially symmetric forms | |||
If the system to be studied is radially symmetric, then the equation in | |||
n | |||
dimension becomes | |||
ψ″+n−1rψ′+λeψ=0 | |||
where | |||
r | |||
is the distance from the origin. With the boundary conditions | |||
ψ′(0)=0,ψ(1)=0 | |||
and for | |||
λ≥0 | |||
, a real solution exists only for | |||
λ∈[0,λc] | |||
, where | |||
λc | |||
is the critical parameter called as Frank-Kamenetskii parameter. The critical parameter is | |||
λc=0.8785 | |||
for | |||
n=1 | |||
, | |||
λc=2 | |||
for | |||
n=2 | |||
and | |||
λc=3.32 | |||
for | |||
n=3 | |||
. For | |||
n=1, 2 | |||
, two solution exists and for | |||
3≤n≤9 | |||
infinitely many solution exists with solutions oscillating about the point | |||
λ=2(n−2) | |||
. For | |||
n≥10 | |||
, the solution is unique and in these cases the critical parameter is given by | |||
λc=2(n−2) | |||
. Multiplicity of solution for | |||
n=3 | |||
was discovered by Israel Gelfand in 1963 and in later 1973 generalized for all | |||
n | |||
by Daniel D. Joseph and Thomas S. Lundgren. | |||
The solution for | |||
n=1 | |||
that is valid in the range | |||
λ∈[0,0.8785] | |||
is given by | |||
ψ=−2ln[e−ψm/2cosh(λ2e−ψm/2r)] | |||
where | |||
ψm=ψ(0) | |||
is related to | |||
λ | |||
as | |||
eψm/2=cosh(λ2e−ψm/2). | |||
The solution for | |||
n=2 | |||
that is valid in the range | |||
λ∈[0,2] | |||
is given by | |||
ψ=ln[64eψm(λeψmr2+8)2] | |||
where | |||
ψm=ψ(0) | |||
is related to | |||
λ | |||
as | |||
(λeψm+8)2−64eψm=0. | |||
</source><br /> | |||
== Referências == | |||
# https://en.wikipedia.org/wiki/Liouville%E2%80%93Bratu%E2%80%93Gelfand_equation | |||
# Scherer, CLÁUDIO. Métodos Computacionais da Física. 2010. |
Edição das 15h28min de 3 de maio de 2024
Na matemática, a Equação Liouville–Bratu–Gelfand or Equação de Liouville é uma equação de Poisson não linear, nomeada em homenagem aos matemáticos Joseph Liouville, Gheorghe Bratu e Israel Gelfand, que é descrita da seguinte forma
∇2ψ+λeψ=0
Essa equação aparece em problemas de fuga térmica, como na teoria de Frank-Kamenetskii, e na astrofísica, por exemplo, na equação Emden–Chandrasekhar. Esta equação pode descrever a carga espacial de eletricidade em torno de um fio brilhante ou até mesmo uma nebulosa planetária.
A solução de Liouville
In two dimension with Cartesian Coordinates (x,y) , Joseph Liouville proposed a solution in 1853 as
λeψ(u2+v2+1)2=2[(∂u∂x)2+(∂u∂y)2]
where f(z)=u+iv
is an arbitrary analytic function with
z=x+iy . In 1915, G.W. Walker found a solution by assuming a form for f(z) . If r2=x2+y2 , then Walker's solution is
8e−ψ=λ[(ra)n+(ar)n]2
where a
is some finite radius. This solution decays at infinity for any
n , but becomes infinite at the origin for n<1
, becomes finite at the origin for
n=1
and becomes zero at the origin for
n>1 . Walker also proposed two more solutions in his 1915 paper.
Radially symmetric forms
If the system to be studied is radially symmetric, then the equation in n
dimension becomes
ψ″+n−1rψ′+λeψ=0
where r
is the distance from the origin. With the boundary conditions
ψ′(0)=0,ψ(1)=0
and for λ≥0 , a real solution exists only for λ∈[0,λc] , where λc
is the critical parameter called as Frank-Kamenetskii parameter. The critical parameter is
λc=0.8785
for
n=1 , λc=2
for
n=2
and
λc=3.32
for
n=3 . For n=1, 2 , two solution exists and for 3≤n≤9
infinitely many solution exists with solutions oscillating about the point
λ=2(n−2) . For n≥10 , the solution is unique and in these cases the critical parameter is given by λc=2(n−2) . Multiplicity of solution for n=3
was discovered by Israel Gelfand in 1963 and in later 1973 generalized for all
n
by Daniel D. Joseph and Thomas S. Lundgren.
The solution for n=1
that is valid in the range
λ∈[0,0.8785]
is given by
ψ=−2ln[e−ψm/2cosh(λ2e−ψm/2r)]
where ψm=ψ(0)
is related to
λ
as
eψm/2=cosh(λ2e−ψm/2).
The solution for n=2
that is valid in the range
λ∈[0,2]
is given by
ψ=ln[64eψm(λeψmr2+8)2]
where ψm=ψ(0)
is related to
λ
as
(λeψm+8)2−64eψm=0.
</source>
Referências
- https://en.wikipedia.org/wiki/Liouville%E2%80%93Bratu%E2%80%93Gelfand_equation
- Scherer, CLÁUDIO. Métodos Computacionais da Física. 2010.