Equação de Ginzburg-Landau complexa: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
A equação de Ginzburg-Landau complexa (CGLE) é uma das equações não lineares mais estudadas da física. Ela oferece uma descrição geral de sistemas com uma fraca dependência não linear. Quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo: | |||
A equação de Ginzburg-Landau | <math> | ||
\frac{\partial A}{\partial t} = (1+ic_1)\nabla^2 A + A - (1-ic_3) A|A|^2. | |||
</math> | |||
Em especial, para <math>c_1 = 0</math> e <math>c_3 = 0</math>, ela se reduz para a equação de Ginzburg-Landau real. E, para <math>c_1 \rightarrow + \infty </math> e <math>c_3 \rightarrow + \infty</math>, ela se reduz à equação de Schrödinger não linear. Ela descreve uma variedade enorme de fenômenos, como: | |||
* Ondas não lineares; | * Ondas não lineares; | ||
Linha 7: | Linha 12: | ||
* Superfluidez; | * Superfluidez; | ||
* Condensado de Bose-Einstein. | * Condensado de Bose-Einstein. | ||
== Dedução == | == Dedução == | ||
Linha 22: | Linha 17: | ||
[[File:Phase_space_circle.png|thumb|right|Espaço de fase do oscilador harmônico]] | [[File:Phase_space_circle.png|thumb|right|Espaço de fase do oscilador harmônico]] | ||
A energia de um oscilador harmônico é expressa pela equação abaixo, onde <math>E</math> é a energia, <math>q</math> e <math>p</math> a coordenada e seu respectivo momento, <math>m</math> é a massa e <math>\omega_0</math> a frequência angular | É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço. A energia de um oscilador harmônico é expressa pela equação abaixo, onde <math>E</math> é a energia, <math>q</math> e <math>p</math> a coordenada e seu respectivo momento, <math>m</math> é a massa e <math>\omega_0</math> a frequência angular | ||
<math> | <math> |
Edição das 15h49min de 28 de abril de 2024
A equação de Ginzburg-Landau complexa (CGLE) é uma das equações não lineares mais estudadas da física. Ela oferece uma descrição geral de sistemas com uma fraca dependência não linear. Quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:
Em especial, para e , ela se reduz para a equação de Ginzburg-Landau real. E, para e , ela se reduz à equação de Schrödinger não linear. Ela descreve uma variedade enorme de fenômenos, como:
- Ondas não lineares;
- Transições de fase de segunda ordem;
- Supercondutividade;
- Superfluidez;
- Condensado de Bose-Einstein.
Dedução
É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço. A energia de um oscilador harmônico é expressa pela equação abaixo, onde é a energia, e a coordenada e seu respectivo momento, é a massa e a frequência angular
Ao realizar as seguintes mudanças de variáveis, e , a equação da energia produz trajetórias circulares no espaço de fase de e
Essa é uma importante simetria do oscilador harmônico linear, resultando que a sua energia é proporcional ao quadrado da amplitude de oscilação, não dependendo da fase. Isso sugere uma motivação, qual é o menor termo não linear que pode ser adicionado de modo a preservar essa simetria. Para tanto, o estado do sistema será descrito em coordenadas polares, onde é a amplitude e a fase
Define-se, então, a variável complexa , portanto a equação acima pode ser reescrita como
Ao realizar a transformação de variável , com , a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear tal que
também seja invariante a rotações.
Então, perante às transformações e , a função deve satisfazer
para que seja possível fatorar o termo responsável pela rotação e obter novamente a equação original.
Considerando pequenas oscilações, é possível expandir em potências de e até a menor ordem possível que satisfaça a condição e que introduza uma não linearidade à equação. Com isso, obtém-se
Utilizando o resultado encontrado e expressando em coordenadas polares por meio de
Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de . As novas equações obtidas são
Para encontrar a amplitude estacionária, pode-se tomar na equação, o que resulta na solução trivial e . Então, para que exista uma amplitude estacionária não nula, os sinais de e de devem ser opostos. Além disso, por inspeção observa-se que, caso e , pequenos valores de amplitude irão diminuir e grandes valores de amplitude irão aumentar, o que indica que a solução estacionária não trivial será instável. Portanto, define-se para , , com e . Por fim, ao voltar para a representação no plano complexo, chega-se em
Esta é a equação de Stuart-Landau. Para obter a equação complexa de Ginzburg-Landau, é necessário considerar um sistema espacialmente extenso, em que cada ponto é um oscilador modelado pela equação acima. Para isso, é adicionado um termo proporcional ao laplaciano de A, , cujo significado fica evidente ao discretizar a função. Ele computa a diferença de no sítio em questão com relação à média dos sítios vizinhos, resultando em uma tendência de pontos próximos oscilarem com amplitudes e fases semelhantes. Ao adicionar esse novo termo e redefinir as constantes de modo a reduzi-las sem perder as características importantes do sistema, chega-se na equação complexa de Ginzburg-Landau
Método FTCS
Para estudar o comportamento das soluções foi utilizados o método FTCS(Foward-Time Central-Space) explícito que consiste em discretizar o domínio temporal e o espacial da equação, resolvemos as derivadas espaciais por uma aproximação dos pontos vizinhos ao ponto que queremos encontrar, enquanto atualizamos a parte temporal, também por uma aproximação como na parte espacial, porém fazemos por diferenciação entre a taxa de variação (solução futura) e a solução atual. A partir da CGLE em duas dimensões:
para
Aplicamos o método da seguinte maneira:
Agora reorganizando a equação para deixar o tempo futuro na esquerda e o tempo atual na direita e considerando que os passos na direção x tem o mesmo tamanho do que os na direção y (), chegamos em :
Referências
[1] García-Morales, V., & Krischer, K. (2012). The complex Ginzburg–Landau equation: an introduction. Contemporary Physics, 53(2), 79–95. https://doi.org/10.1080/00107514.2011.642554
[2] H. Riecke, (2021). Methods of Nonlinear Analysis
[3] Igor S. Aranson, Lorenz Kramer, (2001). The World of the Complex Ginzburg-Landau Equation