Modelo de Lotka-Volterra: mudanças entre as edições
Sem resumo de edição |
|||
| (10 revisões intermediárias pelo mesmo usuário não estão sendo mostradas) | |||
| Linha 1: | Linha 1: | ||
{{Ecologia|[[ | {{Ecologia| [[AC: Jogo da Vida | Jogo da Vida]]|[[Modelo de Lotka-Volterra amortecido]]}} | ||
== Versão tradicional == | |||
No modelo de Lotka-Volterra temos as seguintes considerações: | No modelo de Lotka-Volterra temos as seguintes considerações: | ||
| Linha 21: | Linha 23: | ||
=== Separação de variáveis === | === Separação de variáveis === | ||
Utilizando a separação de variáveis, temos: | |||
<math display="block">\frac{dy}{dt}\frac{dt}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math> | <math display="block">\frac{dy}{dt}\frac{dt}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math> | ||
Logo: | |||
<math display="block">\frac{dy}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math><math display="block">\frac{\left(a-\alpha y\right)}{y}dy=\frac{\left(-c+\gamma x\right)}{x}dx</math><math display="block">\left(\frac{a}{y}-\alpha\right)dy=\left(-\frac{c}{x}+\gamma\right)dx</math>Integrando ambos os lados | <math display="block">\frac{dy}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math><math display="block">\frac{\left(a-\alpha y\right)}{y}dy=\frac{\left(-c+\gamma x\right)}{x}dx</math><math display="block">\left(\frac{a}{y}-\alpha\right)dy=\left(-\frac{c}{x}+\gamma\right)dx</math>Integrando ambos os lados: | ||
<math display="block">a\ln y-\alpha y=-c\ln x+\gamma x+C</math><math display="block">a\ln y-\alpha y+c\ln x-\gamma x=C</math> | <math display="block">a\ln y-\alpha y=-c\ln x+\gamma x+C</math><math display="block">a\ln y-\alpha y+c\ln x-\gamma x=C</math> | ||
Onde <math display="inline">C</math> é uma constante de integração. Para plotarmos um gráfico, considerando apenas <math display="inline">a=\alpha=\gamma=c=1</math> Temos então: | Onde <math display="inline">C</math> é uma constante de integração. Para plotarmos um gráfico, considerando apenas <math display="inline">a=\alpha=\gamma=c=1</math> Temos então: | ||
| Linha 36: | Linha 37: | ||
<math display="block">\ln y+\ln x-\left(x+y\right)=C</math> | <math display="block">\ln y+\ln x-\left(x+y\right)=C</math> | ||
Um ponto de equilíbrio fora da origem é obtido quando: | |||
<math display="block">\frac{dx}{dt}=x\left(a-\alpha y\right)=0\rightarrow y=\frac{a}{\alpha}=1</math><math display="block">\frac{dy}{dt}=y\left(-c+\gamma x\right)=0\rightarrow x=\frac{c}{\gamma}=1</math> | <math display="block">\frac{dx}{dt}=x\left(a-\alpha y\right)=0\rightarrow y=\frac{a}{\alpha}=1</math><math display="block">\frac{dy}{dt}=y\left(-c+\gamma x\right)=0\rightarrow x=\frac{c}{\gamma}=1</math> | ||
Então neste caso, o sistema oscila em torno de <math display="inline">\left(1,1\right)</math> e a constante <math display="inline">C</math> é definida pelas condições iniciais <math display="inline">\left(x_{0},y_{0}\right)</math>. | Então neste caso, o sistema oscila em torno de <math display="inline">\left(1,1\right)</math> e a constante <math display="inline">C</math> é definida pelas condições iniciais <math display="inline">\left(x_{0},y_{0}\right)</math>. Para a condição em que <math display="inline">x_{0}=y_{0}=1</math>, então: | ||
<math display="block">\ln1+\ln1-\left(1+1\right)=C</math><math display="block">-2=C</math> | <math display="block">\ln1+\ln1-\left(1+1\right)=C</math><math display="block">-2=C</math> | ||
| Linha 46: | Linha 47: | ||
Então para este conjunto de parâmetros e condições iniciais: <math display="block">\ln y+\ln x-\left(x+y\right)+2=0</math> | Então para este conjunto de parâmetros e condições iniciais: <math display="block">\ln y+\ln x-\left(x+y\right)+2=0</math> | ||
Neste caso o sistema vai permanecer no ponto de equilíbrio | Neste caso o sistema vai permanecer no ponto de equilíbrio. Para outras condições iniciais, o sistema vai oscilar em torno do ponto de equilíbrio. Obviamente além do ponto <math display="inline">\left(1,1\right)</math>, temos um ponto de equilíbrio em <math display="inline">\left(0,0\right)</math>. Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização. | ||
Obviamente além do ponto <math display="inline">\left(1,1\right)</math>, temos um ponto de equilíbrio em <math display="inline">\left(0,0\right)</math>. Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização. | |||
[[Ficheiro:Plot Lotka-Volterra.png|borda|miniaturadaimagem|<math>f\left(x,y\right)=\ln y+\ln x-\left(x+y\right)-C</math> com as condições <math>a=\alpha=c=\gamma=1</math> e condição inicial arbitrária, plotado no [https://www.geogebra.org/ GeoGebra].|alt=]] | |||
=== Linearização em torno do ponto de equilíbrio === | === Linearização em torno do ponto de equilíbrio === | ||
Primeiro podemos perceber que o sistema é quase-linear em torno de <math display="inline">\left(0,0\right)</math>, verificando que satisfaz: | Primeiro podemos perceber que o sistema é quase-linear em torno de <math display="inline">\left(0,0\right)</math>, verificando que satisfaz: | ||
| Linha 81: | Linha 80: | ||
os seguintes autovalores <math display="inline">\lambda=\left\{ a,-c\right\}</math>. Como um dos valores tem parte real positiva, então é um ponto instável, especificamente devido aos sinais opostos é um ponto de sela. Como é instável significa que se a condição inicial for próxima de <math display="inline">\left(0,0\right)</math>, a evolução do sistema vai se afastar do ponto de equilíbrio. Essa aproximação também indica que próximo do ponto de equilíbrio, a dinâmica pode ser descrita tanto pelo conjunto de equações não lineares, como pelo sistema linear. | |||
Agora o segundo ponto de equilíbrio, de maneira geral é <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>. Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento <math display="inline">u=x-\frac{c}{\gamma}</math> e <math display="inline">v=y-\frac{a}{\alpha}</math>. Então temos <math display="inline">dx=du</math> e <math display="inline">dv=dy</math> e substituindo, para <math display="inline">\dot{x}</math>:<math display="block">\frac{du}{dt}=\left(u+\frac{c}{\gamma}\right)a-\alpha\left(u+\frac{c}{\gamma}\right)\left(v+\frac{a}{\alpha}\right)</math><math display="block">\frac{du}{dt}=ua+\frac{c}{\gamma}a-\alpha uv-\frac{\alpha c}{\gamma}v-ua-\frac{ca}{\gamma}</math><math display="block">\frac{du}{dt}=-\alpha uv-\frac{\alpha c}{\gamma}v</math>E para <math display="inline">\dot{y}</math>: | Agora o segundo ponto de equilíbrio, de maneira geral é <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>. Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento <math display="inline">u=x-\frac{c}{\gamma}</math> e <math display="inline">v=y-\frac{a}{\alpha}</math>. Então temos <math display="inline">dx=du</math> e <math display="inline">dv=dy</math> e substituindo, para <math display="inline">\dot{x}</math>:<math display="block">\frac{du}{dt}=\left(u+\frac{c}{\gamma}\right)a-\alpha\left(u+\frac{c}{\gamma}\right)\left(v+\frac{a}{\alpha}\right)</math><math display="block">\frac{du}{dt}=ua+\frac{c}{\gamma}a-\alpha uv-\frac{\alpha c}{\gamma}v-ua-\frac{ca}{\gamma}</math><math display="block">\frac{du}{dt}=-\alpha uv-\frac{\alpha c}{\gamma}v</math>E para <math display="inline">\dot{y}</math>: | ||
| Linha 101: | Linha 100: | ||
<math display="block">-\lambda^{2}-\frac{\gamma a}{\alpha}\frac{\alpha c}{\gamma}=0</math><math display="block">\lambda=\pm\sqrt{-ac}=\pm\sqrt{ac}i</math> | <math display="block">-\lambda^{2}-\frac{\gamma a}{\alpha}\frac{\alpha c}{\gamma}=0</math><math display="block">\lambda=\pm\sqrt{-ac}=\pm\sqrt{ac}i</math> | ||
Como temos raízes puramente imaginárias e <math display="inline">\lambda_{1}=\lambda_{2}^{*}</math>, temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math> o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio. | Como temos raízes puramente imaginárias e <math display="inline">\lambda_{1}=\lambda_{2}^{*}</math>, temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math> o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio. | ||
<div class="center">[[Ficheiro:Tabela de autovaloes.png|miniaturadaimagem|Classificação dos pontos de estabilidade de acordo com os autovalores<ref>[http://www.sel.eesc.usp.br/lac/disciplinas/sels/arquivos/sel364/private/aula1a2cnl.pdf Análise de sistemas não-lineares] (Vilma A. Oliveira e José Ricardo Rosolen, USP)</ref>.]]</div> | <div class="center">[[Ficheiro:Tabela de autovaloes.png|miniaturadaimagem|Classificação dos pontos de estabilidade de acordo com os autovalores<ref>[http://www.sel.eesc.usp.br/lac/disciplinas/sels/arquivos/sel364/private/aula1a2cnl.pdf Análise de sistemas não-lineares] (Vilma A. Oliveira e José Ricardo Rosolen, USP)</ref>.|300x300px]]</div> | ||
=== Segundo método de Lyapunov === | === Segundo método de Lyapunov === | ||
Para avaliar o ponto <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, podemos usar de maneira análoga ao [[Métodos de Lyapunov|exemplo do segundo critério de Lyapunov]]: | |||
<math display="block">V\left(\boldsymbol{x}\right)=\frac{x^{2}}{\alpha}-\frac{y^{2}}{\gamma}</math> | |||
Como já discutimos <math display="inline">V\left(\boldsymbol{x}_{0}\right)=0</math> e a região <math display="inline">W^{+}\left\{ \left(x,y\right)|\left|x\right|>\left|y\right|\right\}</math> onde <math display="inline">V\left(\boldsymbol{x}\right)>0</math> para <math display="inline">\boldsymbol{x}\neq\boldsymbol{x}_{0}</math> , sendo <math display="inline">\boldsymbol{x}_{0}</math> um ponto de acumulação em <math display="inline">W^{+}</math><ref>[http://www.dii.unimo.it/~zanasi/didattica/Teoria_dei_Sistemi/Luc_TDS_ING_2016_Stability_Analysis_of_Nonlinear_Systems.pdf Stability Analysis of Nonlinear Systems] (Roberto Zanasi, Universidade de Módena e Reggio Emília)</ref>. Então: | |||
<math display="block">\begin{align} | |||
\dot{V}\left(\boldsymbol{x}\right) & =\left[\nabla V\right]\cdot\left[\boldsymbol{f}\left(\boldsymbol{x}\right)\right]\\ | |||
& =\left(\frac{2x}{\alpha},-\frac{2y}{\gamma}\right)\left(\dot{x},\dot{y}\right)\\ | |||
& =2x^{2}\frac{a}{\alpha}-2x^{2}y+2y^{2}\frac{c}{\gamma}-2y^{2}x\\ | |||
& =2x^{2}\left(\frac{a}{\alpha}-y\right)+2y^{2}\left(\frac{c}{\gamma}-x\right)\end{align}</math>Lembrando do nosso segundo ponto de equilíbrio <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>: | |||
<math display="block">\dot{V}\left(\boldsymbol{x}\right)=2x^{2}\left(y_{2}-y\right)+2y^{2}\left(x_{2}-x\right)</math> | |||
Então se estamos próximos suficiente do ponto de equilíbrio em análise <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, temos então uma instabilidade local pois <math display="inline">\dot{V}\left(\boldsymbol{x}\right)>0</math> é positivo definido em <math display="inline">W^{+}</math>, uma vez que <math display="inline">\left|y\right|<\left|y_{2}\right|</math> , <math display="inline">\left|x\right|<\left|x_{2}\right|</math>. Olhando o segundo ponto de equilíbrio, <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>, podemos manipular as equações da seguinte forma: | |||
*<math display="inline">\frac{dx}{dt}=x\left(a-\alpha y\right)=x\alpha\left(\frac{a}{\alpha}-y\right)=x\alpha\left(y_{2}-y\right)</math> | *<math display="inline">\frac{dx}{dt}=x\left(a-\alpha y\right)=x\alpha\left(\frac{a}{\alpha}-y\right)=x\alpha\left(y_{2}-y\right)</math> | ||
| Linha 130: | Linha 143: | ||
& =V\left(x\right)+\frac{\alpha}{\gamma}V\left(y\right)\end{align}</math> | & =V\left(x\right)+\frac{\alpha}{\gamma}V\left(y\right)\end{align}</math> | ||
De forma geral temos <math display="inline">V\left(z\right)=z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)</math>, e precisamos que <math display="inline">V\left(z\right)>0</math> quando <math display="inline">z\neq z_{2}</math>. | De forma geral temos <math display="inline">V\left(z\right)=z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)</math>, e precisamos que <math display="inline">V\left(z\right)>0</math> quando <math display="inline">z\neq z_{2}</math>. Além de ser facilmente visto via gráfico para todos os valores aceitáveis <math display="inline">z,z_{2}\in\left[0,1\right]</math>, também podemos analisar a seguinte desigualdade: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
| Linha 137: | Linha 150: | ||
\frac{z}{z_{2}} & >1+\ln\left(\frac{z}{z_{2}}\right)\\ | \frac{z}{z_{2}} & >1+\ln\left(\frac{z}{z_{2}}\right)\\ | ||
e^{\frac{z}{z_{2}}} & >e\frac{z}{z_{2}}\\ | e^{\frac{z}{z_{2}}} & >e\frac{z}{z_{2}}\\ | ||
e^{ | e^{u} & >eu\end{align}</math>Podemos ver quer a desigualdade desigualdade é válida exceto se <math display="inline">x=1</math>. Mas como fizemos a seguinte substituição <math display="inline">u=\frac{z}{z_{2}}</math> então <math display="inline">u=1\rightarrow z=z_{2}</math>, e de fato que queremos que seja positiva definida fora do ponto de equilíbrio. Uma vez que sabemos que <math display="inline">V\left(x,y\right)</math> é positivo definido, calculamos então: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
| Linha 146: | Linha 159: | ||
& =\left(\frac{x-x_{2}}{x}\right)\left(x\alpha\left(y_{2}-y\right)\right)+\frac{\alpha}{\gamma}\left(\frac{y-y_{2}}{y}\right)\left(y\gamma\left(-x_{2}+x\right)\right)\end{align}</math> | & =\left(\frac{x-x_{2}}{x}\right)\left(x\alpha\left(y_{2}-y\right)\right)+\frac{\alpha}{\gamma}\left(\frac{y-y_{2}}{y}\right)\left(y\gamma\left(-x_{2}+x\right)\right)\end{align}</math> | ||
Então:<math display="block">\dot{V}\left(\boldsymbol{x}\right)=\alpha\left(x-x_{2}\right)\left(y_{2}-y\right)-\alpha\left(y_{2}-y\right)\left(x-x_{2}\right)=0</math>Temos então a condição de estabilidade <math display="inline">\dot{V}\ | Então:<math display="block">\dot{V}\left(\boldsymbol{x}\right)=\alpha\left(x-x_{2}\right)\left(y_{2}-y\right)-\alpha\left(y_{2}-y\right)\left(x-x_{2}\right)=0</math>Temos então a condição de estabilidade <math display="inline">\dot{V}\leq0</math> concordando como que já havíamos obtidos anteriormente. | ||
=== Solução numérica === | |||
Um exemplo resolvido numericamente pode ser visto em [[Modelo de Lotka-Volterra amortecido]], onde foi aproveitado os códigos desenvolvidos para este mesmo. | |||
== Versão adimensional == | |||
Originalmente temos 4 parâmetros, mas podemos realizar uma série de manipulações visando uma redução da quantidade de parâmetros. Escrevendo o sistema como: | |||
<math display="block">\begin{align} | |||
\frac{dN}{dt} & =aN-bNP\\ | |||
\frac{dP}{dt} & =cPN-dP | |||
\end{align}</math> | |||
Podemos definir então <math display="inline">\widehat{t}=at</math>. Multiplicando ambas equações por <math display="inline">1/a</math>: | |||
<math display="block">\begin{align} | |||
\frac{1}{a}\frac{dN}{dt} & =N-\frac{b}{a}NP\\ | |||
\frac{1}{a}\frac{dP}{dt} & =\frac{c}{a}PN-\frac{d}{a}P | |||
\end{align}</math> | |||
Se definimos <math display="inline">p=\left(b/a\right)P</math> e multiplicamos a segunda equação por <math display="inline">b/a</math>: | |||
<math display="block">\begin{align} | |||
\frac{dN}{d\widehat{t}} & =N-Np\\ | |||
\frac{d}{d\widehat{t}}\left(\frac{bP}{a}\right) & =\frac{c}{a}\left(\frac{b}{a}P\right)N-\frac{d}{a}\left(\frac{b}{a}P\right) | |||
\end{align}</math> | |||
Agora se multiplicamos a primeira linha e definimos <math display="inline">n=\left(c/d\right)N</math>: | |||
<math display="block">\begin{align} | |||
\frac{d}{d\widehat{t}}\left(\frac{c}{d}N\right) & =\frac{c}{d}N-\left(\frac{c}{d}N\right)p\\ | |||
\frac{dp}{d\widehat{t}} & =\frac{c}{a}pN-\frac{d}{a}p | |||
\end{align}</math> | |||
Definindo então <math display="inline">\alpha=\frac{d}{a}</math>: | |||
<math display="block">\begin{align} | |||
\frac{d n}{d\widehat{t}} & =n-np\\ | |||
\frac{dp}{d\widehat{t}} & =\frac{c}{a}\frac{d}{c}pn-\alpha p | |||
\end{align}</math> | |||
Ou então, ficamos apenas com um único parâmetro. | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\ | \frac{dn}{d\widehat{t}} & =n\left(1-p\right)\\ | ||
\frac{dp}{d\widehat{t}} & =\alpha p\left(n-1\right) | |||
\end{align}</math> | |||
=== Separação de variáveis === | |||
Aplicando a separação de variáveis, temos então: <math display="block">\begin{align} | |||
\frac{dp}{dn} & =\frac{\alpha p\left(n-1\right)}{n\left(1-p\right)}\\ | |||
\frac{\left(1-p\right)}{p}dp & =\alpha\frac{\left(n-1\right)}{n}dn\\ | |||
\left(\frac{1}{p}-1\right)dp & =\alpha\left(1-\frac{1}{n}\right)dn\\ | |||
\ln p-p+K & =\alpha\left(n-\ln\left(n\right)\right)\\ | |||
K & =\alpha n+p-\alpha\ln\left(n\right)-\ln p | |||
\end{align}</math> | |||
Ou ainda, apenas: | |||
<math display="block">K=\alpha n+p+\ln\left(n^{\alpha}p\right)</math> | |||
== Referências == | |||
=== Principais materiais utilizados === | === Principais materiais utilizados === | ||
| Linha 172: | Linha 236: | ||
=== Citações === | === Citações === | ||
<references /> | <references /> | ||
{{Ecologia| [[AC: Jogo da Vida | Jogo da Vida]]|[[Modelo de Lotka-Volterra amortecido]]}} | |||
Edição atual tal como às 00h42min de 10 de novembro de 2022
Anterior: Jogo da Vida | Índice: Ecologia | Próximo: Modelo de Lotka-Volterra amortecido
Versão tradicional
No modelo de Lotka-Volterra temos as seguintes considerações:
- Na ausência de predadores, a população de presas aumenta a uma taxa proporcional à população atual;
- Na ausência de presas, os predadores irão à extinção;
- O número de encontro entre presas e predadores é proporcional a produto das duas populações.
- Estes encontros beneficiam os predadores em detrimento das presas.
Dessa forma, as equações são:
Onde:
- taxa de crescimento de presas sem predadores;
- taxa de decréscimo da população de presas devido a predação;
- taxa de mortalidade da população de predadores sem presas;
- : taxa de crescimento de predadores devido a predação.
Separação de variáveis
Utilizando a separação de variáveis, temos:
Logo:
Onde é uma constante de integração. Para plotarmos um gráfico, considerando apenas Temos então:
Um ponto de equilíbrio fora da origem é obtido quando:
Então neste caso, o sistema oscila em torno de e a constante é definida pelas condições iniciais . Para a condição em que , então:
Então para este conjunto de parâmetros e condições iniciais:
Neste caso o sistema vai permanecer no ponto de equilíbrio. Para outras condições iniciais, o sistema vai oscilar em torno do ponto de equilíbrio. Obviamente além do ponto , temos um ponto de equilíbrio em . Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização.
Linearização em torno do ponto de equilíbrio
Primeiro podemos perceber que o sistema é quase-linear em torno de , verificando que satisfaz:
Então lembrando as equações:
Logo:
Desprezando então os termos não lineares podemos escrever o seguinte sistema linearizado em torno da origem:
os seguintes autovalores . Como um dos valores tem parte real positiva, então é um ponto instável, especificamente devido aos sinais opostos é um ponto de sela. Como é instável significa que se a condição inicial for próxima de , a evolução do sistema vai se afastar do ponto de equilíbrio. Essa aproximação também indica que próximo do ponto de equilíbrio, a dinâmica pode ser descrita tanto pelo conjunto de equações não lineares, como pelo sistema linear.
Agora o segundo ponto de equilíbrio, de maneira geral é . Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento e . Então temos e e substituindo, para :
Como temos raízes puramente imaginárias e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \lambda_{1}=\lambda_{2}^{*}} , temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio.
Segundo método de Lyapunov
Para avaliar o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{1},y_{1}\right)=\left(0,0\right)} , podemos usar de maneira análoga ao exemplo do segundo critério de Lyapunov:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V\left(\boldsymbol{x}\right)=\frac{x^{2}}{\alpha}-\frac{y^{2}}{\gamma}}
Como já discutimos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V\left(\boldsymbol{x}_{0}\right)=0} e a região Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle W^{+}\left\{ \left(x,y\right)|\left|x\right|>\left|y\right|\right\}} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V\left(\boldsymbol{x}\right)>0} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \boldsymbol{x}\neq\boldsymbol{x}_{0}} , sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \boldsymbol{x}_{0}} um ponto de acumulação em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle W^{+}} [2]. Então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{V}\left(\boldsymbol{x}\right) & =\left[\nabla V\right]\cdot\left[\boldsymbol{f}\left(\boldsymbol{x}\right)\right]\\ & =\left(\frac{2x}{\alpha},-\frac{2y}{\gamma}\right)\left(\dot{x},\dot{y}\right)\\ & =2x^{2}\frac{a}{\alpha}-2x^{2}y+2y^{2}\frac{c}{\gamma}-2y^{2}x\\ & =2x^{2}\left(\frac{a}{\alpha}-y\right)+2y^{2}\left(\frac{c}{\gamma}-x\right)\end{align}} Lembrando do nosso segundo ponto de equilíbrio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{V}\left(\boldsymbol{x}\right)=2x^{2}\left(y_{2}-y\right)+2y^{2}\left(x_{2}-x\right)}
Então se estamos próximos suficiente do ponto de equilíbrio em análise Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{1},y_{1}\right)=\left(0,0\right)}
, temos então uma instabilidade local pois Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \dot{V}\left(\boldsymbol{x}\right)>0}
é positivo definido em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle W^{+}}
, uma vez que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left|y\right|<\left|y_{2}\right|}
, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left|x\right|<\left|x_{2}\right|}
. Olhando o segundo ponto de equilíbrio, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)}
, podemos manipular as equações da seguinte forma:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dx}{dt}=x\left(a-\alpha y\right)=x\alpha\left(\frac{a}{\alpha}-y\right)=x\alpha\left(y_{2}-y\right)}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dy}{dt}=y\left(-c+\gamma x\right)=y\gamma\left(-\frac{c}{\gamma}+x\right)=y\gamma\left(-x_{2}+x\right)}
Definindo então a seguinte função de Lyapunov:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V\left(x,y\right)=x-x_{2}\left[1+\ln\left(\frac{x}{x_{2}}\right)\right]+\frac{\alpha}{\gamma}\left(y-y_{2}\left[1+\ln\left(\frac{y}{y_{2}}\right)\right]\right)}
Analisando no ponto de e equilíbrio, temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} V\left(x_{2},y_{2}\right) & =x_{2}-x_{2}\left[1+\ln\left(\frac{x_{2}}{x_{2}}\right)\right]+\frac{\alpha}{\gamma}\left(y_{2}-y_{2}\left[1+\ln\left(\frac{y_{2}}{y_{2}}\right)\right]\right)\\ & =x_{2}-x_{2}+\frac{\alpha}{\gamma}\left(y_{2}-y_{2}\right)\\ & =0\end{align}}
Agora precisamos que para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x,y\right)\neq0} tenhamos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V>0} , na região próxima ao ponto de equilíbrio. Separando em dois termos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} V\left(x,y\right) & =\left[x-x_{2}\left(1+\ln\left(\frac{x}{x_{2}}\right)\right)\right]+\frac{\alpha}{\gamma}\left[y-y_{2}\left(1+\ln\left(\frac{y}{y_{2}}\right)\right)\right]\\ & =V\left(x\right)+\frac{\alpha}{\gamma}V\left(y\right)\end{align}}
De forma geral temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V\left(z\right)=z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)} , e precisamos que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V\left(z\right)>0} quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle z\neq z_{2}} . Além de ser facilmente visto via gráfico para todos os valores aceitáveis Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle z,z_{2}\in\left[0,1\right]} , também podemos analisar a seguinte desigualdade:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right) & >0\\ z & >z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)\\ \frac{z}{z_{2}} & >1+\ln\left(\frac{z}{z_{2}}\right)\\ e^{\frac{z}{z_{2}}} & >e\frac{z}{z_{2}}\\ e^{u} & >eu\end{align}} Podemos ver quer a desigualdade desigualdade é válida exceto se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x=1} . Mas como fizemos a seguinte substituição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=\frac{z}{z_{2}}} então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=1\rightarrow z=z_{2}} , e de fato que queremos que seja positiva definida fora do ponto de equilíbrio. Uma vez que sabemos que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle V\left(x,y\right)} é positivo definido, calculamos então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{V}\left(\boldsymbol{x}\right) & =\left[\nabla V\right]\cdot\left[\boldsymbol{f}\left(\boldsymbol{x}\right)\right]\\ & =\left[\frac{\partial V\left(x\right)}{\partial x},\frac{\alpha}{\gamma}\frac{\partial V\left(y\right)}{\partial y}\right]\cdot\left[x\alpha\left(y_{2}-y\right),y\gamma\left(-x_{2}+x\right)\right] \\ & =\left[1-\frac{x_{2}}{x},\frac{\alpha}{\gamma}\left(1-\frac{y_{2}}{y}\right)\right]\cdot\left[x\alpha\left(y_{2}-y\right),y\gamma\left(-x_{2}+x\right)\right]\\ & =\left(\frac{x-x_{2}}{x}\right)\left(x\alpha\left(y_{2}-y\right)\right)+\frac{\alpha}{\gamma}\left(\frac{y-y_{2}}{y}\right)\left(y\gamma\left(-x_{2}+x\right)\right)\end{align}}
Então:Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{V}\left(\boldsymbol{x}\right)=\alpha\left(x-x_{2}\right)\left(y_{2}-y\right)-\alpha\left(y_{2}-y\right)\left(x-x_{2}\right)=0} Temos então a condição de estabilidade Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \dot{V}\leq0} concordando como que já havíamos obtidos anteriormente.
Solução numérica
Um exemplo resolvido numericamente pode ser visto em Modelo de Lotka-Volterra amortecido, onde foi aproveitado os códigos desenvolvidos para este mesmo.
Versão adimensional
Originalmente temos 4 parâmetros, mas podemos realizar uma série de manipulações visando uma redução da quantidade de parâmetros. Escrevendo o sistema como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dN}{dt} & =aN-bNP\\ \frac{dP}{dt} & =cPN-dP \end{align}}
Podemos definir então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \widehat{t}=at} . Multiplicando ambas equações por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle 1/a} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{1}{a}\frac{dN}{dt} & =N-\frac{b}{a}NP\\ \frac{1}{a}\frac{dP}{dt} & =\frac{c}{a}PN-\frac{d}{a}P \end{align}}
Se definimos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle p=\left(b/a\right)P} e multiplicamos a segunda equação por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle b/a} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dN}{d\widehat{t}} & =N-Np\\ \frac{d}{d\widehat{t}}\left(\frac{bP}{a}\right) & =\frac{c}{a}\left(\frac{b}{a}P\right)N-\frac{d}{a}\left(\frac{b}{a}P\right) \end{align}}
Agora se multiplicamos a primeira linha e definimos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle n=\left(c/d\right)N} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{d\widehat{t}}\left(\frac{c}{d}N\right) & =\frac{c}{d}N-\left(\frac{c}{d}N\right)p\\ \frac{dp}{d\widehat{t}} & =\frac{c}{a}pN-\frac{d}{a}p \end{align}}
Definindo então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \alpha=\frac{d}{a}} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d n}{d\widehat{t}} & =n-np\\ \frac{dp}{d\widehat{t}} & =\frac{c}{a}\frac{d}{c}pn-\alpha p \end{align}}
Ou então, ficamos apenas com um único parâmetro.
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dn}{d\widehat{t}} & =n\left(1-p\right)\\ \frac{dp}{d\widehat{t}} & =\alpha p\left(n-1\right) \end{align}}
Separação de variáveis
Aplicando a separação de variáveis, temos então: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dp}{dn} & =\frac{\alpha p\left(n-1\right)}{n\left(1-p\right)}\\ \frac{\left(1-p\right)}{p}dp & =\alpha\frac{\left(n-1\right)}{n}dn\\ \left(\frac{1}{p}-1\right)dp & =\alpha\left(1-\frac{1}{n}\right)dn\\ \ln p-p+K & =\alpha\left(n-\ln\left(n\right)\right)\\ K & =\alpha n+p-\alpha\ln\left(n\right)-\ln p \end{align}}
Ou ainda, apenas:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle K=\alpha n+p+\ln\left(n^{\alpha}p\right)}
Referências
Principais materiais utilizados
- A survey of constructing Lyapunov functions for mathematical models in population biology (Sze-Bi, Revista Taiwanesa de Matemática )
- Estabilidade de pontos de equilíbrio e existência de soluções periódicas em alguns modelos bidimensionais (Salvador Tavares de Oliveira, UNESP)
- Modelagem Matemática e estabilidade de sistemas predador-presa (Paulo Laerte Natti e outros, UEL)
- Modelo de Lotka-Volterra: a dinâmica predador-presa (Rafael Biasi Pata e Elisa Regina Cara, UNIPAMPA)
Citações
- ↑ Análise de sistemas não-lineares (Vilma A. Oliveira e José Ricardo Rosolen, USP)
- ↑ Stability Analysis of Nonlinear Systems (Roberto Zanasi, Universidade de Módena e Reggio Emília)
Anterior: Jogo da Vida | Índice: Ecologia | Próximo: Modelo de Lotka-Volterra amortecido