|
|
Linha 76: |
Linha 76: |
| ||[[Arquivo: Q_10_T_1.png|thumb|upright=4|none|alt=Alt text|Energia média por MCS para Q = 10 e L = 64.|600px]] | | ||[[Arquivo: Q_10_T_1.png|thumb|upright=4|none|alt=Alt text|Energia média por MCS para Q = 10 e L = 64.|600px]] |
| |[[Arquivo: Q_100_T_1.png|thumb|center|upright=4|none|alt=Alt text|Energia média por MCS para Q = 100 e L = 64.|600px]] | | |[[Arquivo: Q_100_T_1.png|thumb|center|upright=4|none|alt=Alt text|Energia média por MCS para Q = 100 e L = 64.|600px]] |
| |}
| |
|
| |
| ==Magnetização==
| |
| {| class="wikitable" style="text-align: center;"
| |
| !colspan="2"|Magnetização em cada MCS para Q indo de 2 até 10 e L = 64 utilizando algoritmo de Metropolis.
| |
| |-
| |
| |[[Arquivo: mag_Q_2_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 2 e L = 64.|600px]]
| |
| |[[Arquivo: mag_Q_3_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 3 e L = 64.|600px]]
| |
| |-
| |
| |[[Arquivo: mag_Q_4_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 4 e L = 64.|600px]]
| |
| |[[Arquivo: mag_Q_5_T_1.png|thumb|center|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 5 e L = 64.|600px]]
| |
| |-
| |
| ||[[Arquivo: mag_Q_6_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 6 e L = 64.|600px]]
| |
| |[[Arquivo: mag_Q_7_T_1.png|thumb|center|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 7 e L = 64.|600px]]
| |
| |-
| |
| ||[[Arquivo: mag_Q_8_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 8 e L = 64.|600px]]
| |
| |[[Arquivo: mag_Q_9_T_1.png|thumb|center|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 9 e L = 64.|600px]]
| |
| |-
| |
| ||[[Arquivo: mag_Q_10_T_1.png|thumb|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 10 e L = 64.|600px]]
| |
| |[[Arquivo: mag_Q_100_T_1.png|thumb|center|upright=4|none|alt=Alt text|Magnetização média por MCS para Q = 100 e L = 64.|600px]]
| |
| |} | | |} |
|
| |
|
O Modelo
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél da seguinte forma: . A quantidade nos fornece as possíveis orientações para os spins. Os valores que pode assumir são . Dessa forma, um Modelo de Potts bidimensional com possui uma rede bidimensional de spins com 10 orientações diferentes. Nas figuras abaixo podemos ver três possíveis orientações dos spins.
Possibilidades de spin para .
|
Possibilidades de spin para .
|
Possibilidades de spin para .
|
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como
onde é a constante de acoplamento que determina a intensidade da interação e é a delta de Kronecker, definida como 1 se e 0 se .
Uma característica importante desse modelo é que as orientações em si não são relevantes, uma vez que o Hamiltoniano é definido por uma Delta de Kronecker. A única informação relevante é se os spins são iguais ou diferentes. Conforme veremos adiante, para o caso de , recaímos no conhecido Modelo de Ising.
Se incluirmos o campo magnético, o Hamiltoniado de Potts fica
onde e é o campo magnético.
Relação com o Modelo de Ising
O Modelo de Ising é obtido quando tomamos na expressão para . Para que possamos reescrever o Hamiltoniano de Potts em uma forma semelhante ao Hamiltoniano de Ising, vamos somar uma constante aditiva, de modo que o Hamiltoniano fica
Vemos que se os spins são iguais, obtemos e se os spins são diferentes, obtemos . No Modelo de Ising, nós tínhamos e , respectivamente. Uma consequência desse fator meio de diferença é que a temperatura crítica para o Modelo de Potts, para , é metade da temperatura crítica do Ising () e os nos histogramas de energia também são metade.
Algoritmo de Metropolis
Vamos implementar o Modelo de Potts utilizando o algoritmo de Metropolis.
O algoritmo de Metropolis é um método de Cadeia de Markov Monte Carlo (MCMC) para obter amostras aleatórias a partir de uma distribuição de probabilidade da qual a amostragem direta é difícil. O procedimento para a implementação do algoritmo é apresentado abaixo.
1) Escolhemos um estado inicial , que em nosso caso será um spin orientado em uma direção dada por .
2) Através de um sorteio aleatório, com , escolhemos um candidato .
3) Calculamos a prababilidade de aceitação desse candidato atráves de , onde
4) E então aceitamos ou rejeitamo este novo candidato da seguinte forma:
a) Geramos um número aleatório uniforme ;
b) Se , ou seja , aceitamos o novo estado e definimos ;
c) E se , ou seja , rejeitamos o novo estado e continuamos com o estado antigo para frente ;
d) Ao final desse processo, voltamos para o passo 2).
Resultados das simulações
Definimos um Monte Carlo Step (MCS) como sendo o tempo em que a rede bidimensional quadrada com spins é percorrida pelo algoritmo. Ao final de flips de spin (seja com probabilidade ou com probabilidade ), contamos um MCS. Além disso, em todas as simulações, utilizamos em unidades de .
Energia
Energia em cada MCS para Q indo de 2 até 10 e L = 64 utilizando o algoritmo de Metropolis.
|
Energia média por MCS para Q = 2 e L = 64.
|
Energia média por MCS para Q = 3 e L = 64.
|
Energia média por MCS para Q = 4 e L = 64.
|
Energia média por MCS para Q = 5 e L = 64.
|
Energia média por MCS para Q = 6 e L = 64.
|
Energia média por MCS para Q = 7 e L = 64.
|
Energia média por MCS para Q = 8 e L = 64.
|
Energia média por MCS para Q = 9 e L = 64.
|
Energia média por MCS para Q = 10 e L = 64.
|
Energia média por MCS para Q = 100 e L = 64.
|
Códigos utilizados
O código foi escrito em Fortran.
Metropolis - Potts 2D
Referências
D. P. Landau, K. Binder. A Guide Monte Carlo Simulations in Statistical Physics. Cambridge University. New York. 2000.
L. M. Barone, E. Marinari, G. Organtini, F. Ricci-Tersengui. Scientific Programming: C-Language, Algorithms and Models in Science. World Scientific. Singapore. 2013.