Amostragem de Wang-Landau: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 40: | Linha 40: | ||
Nesta seção discutimos algumas observações importantes a se levar em conta na implementação do método de amostragem de Wang-Landau | Nesta seção discutimos algumas observações importantes a se levar em conta na implementação do método de amostragem de Wang-Landau | ||
===Fator de modificação f=== | ===Fator de modificação f=== | ||
Quando tratamos da atualização do fator <math>f</math>, a expressão <math>f_{i+1} = \sqrt{f_{i}}</math> é apenas uma recomendação, uma vez que outros valores de <math>n>1</math> podem ser escolhidos para uma atualização do tipo <math>f_{i+1} = f_{i}^{(1/n)}</math>. Não obstante <math>n = 2</math> é adequado para grande parte dos sistemas estudados, resultando em boa acurácia em relativamente pouco tempo de simulação. | Quando tratamos da atualização do fator <math>f</math>, a expressão <math>f_{i+1} = \sqrt{f_{i}}</math> é apenas uma recomendação, uma vez que outros valores de <math>n>1</math> podem ser escolhidos para uma atualização do tipo <math>f_{i+1} = f_{i}^{(1/n)}</math>. Não obstante, <math>n = 2</math> é adequado para grande parte dos sistemas estudados, resultando em boa acurácia em relativamente pouco tempo de simulação. | ||
===Implementação paralela=== | |||
A simulação pode ser melhorada ainda fazendo múltiplas caminhadas aleatórias paralelamente no espaço de energias. Restringindo o alcance das caminhadas proporcionalmente com o número de caminhantes em paralelo (e.g. No caso de 2 caminhantes simultâneos, dividimos o espaço de energias em 2 e restringimos um caminhante para a metade inferior das energias, e o outro para a parte superior) e depois juntando as densidades de estados resultantes. | |||
===Balanço detalhado=== | |||
A condição de balanço detalhado inicialmente não é satisfeita uma vez que <math>g(E)</math> é constantemente modificada durante a caminhada aleatória. Porém após várias iterações, a condição é satisfeita a medida que <math>f</math> se aproxima de 1. Observa-se que se <math>P(E_1 \rightarrow E_2)</math> é a probabilidade de transição da energia <math>E_1</math> para a energia <math>E_2</math>, utilizando a equação do passo 4 do algoritmo temos que: | |||
<math> | |||
\frac{P(E_1 \rightarrow E_2)}{P(E_2 \rightarrow E_1)} = \frac{g(E_1)}{g(E_2)}. | |||
</math> | |||
Podemos reescrever a equação de uma forma mais familiar | |||
<math> | |||
\frac{1}{g(E_1)}P(E_1 \rightarrow E_2) = \frac{1}{g(E_2)}P(E_2 \rightarrow E_1) | |||
</math> | |||
que é a condição de balanceamento detalhado, uma vez que interpretamos que <math>1/g(E_1)</math> como a probabilidade do sistema possuir a energia <math>E_1</math> e analogamente para <math>E_2</math>. Concluímos então que a condição de balanço detalhado é satisfeita com precisão proporcional a <math>\ln(f)</math>. |
Edição das 12h43min de 17 de outubro de 2022
O algorítmo de amostragem de Wang-Landau é um método de amostragem para simulações de Monte Carlo introduzido por F.Wang e D.P Landau em 2001 que apresenta diversas vantagens sobre outros métodos para sistemas de spins. Dentre eles podemos citar o algoritmo de Metropolis, o algoritmo de clustering de Wolff, ou em um modelamento de ensamble multi-canônico. Nestes dois últimos métodos são utilizados métodos de repesagem de histogramas que são limitados em sistemas grandes devido as baixa qualidade estatística nas asas do histograma. Dentro deste contexto, o algoritmo Wang-Landau promete resolver problemas encontrados em amostragens convencionais como o critical slowing down para temperaturas próximas da temperatura critica utilizando-se de caminhadas aleatórias controladas para mapear a densidade de estados de um sistema, sem fazer uso de qualquer repesagem de histogramas.
A maioria dos algoritmos de amostragem convencionais geram uma distribuição canônica não normalizada
para uma determinada temperatura , Geralmente estas distribuições são estreitas e se faz necessário múltiplas simulações para obter algum parâmetro termodinâmico para uma distribuição significantemente grande de temperaturas. Como não depende de temperatura do sistema, se pudermos encontrá-lo para todo , podemos encontrar a função de partição
e o sistema esta essencialmente resolvido, uma vez que grande parte dos parâmetros termodinâmicos podem ser derivados de . Além disso, a amostragem de Wang-Landau é provada ser útil em diversas aplicações como o antiferromagneto de Potts, sistemas de spins aleatórios, sistemas quânticos, etc... .
Descrição do algoritmo de Wang Landau
Descreveremos o funcionamento do algoritmo de Wang-Landau num sistema de spins clássicos de 2 estados com valores discretos de energia e sem campo magnético. Portanto quando nos referirmos a como densidade de estados, interpretamos como o número de estados com energia E. A amostragem de Wang-Landau faz caminhadas aleatórias no espaço de energia mudando os estados de spins aleatoriamente selecionados, porém esta mudança só é aceita com probabilidade proporcional a reciproca da densidade de estados. Durante a caminhada também se acumula o número de vezes que uma energia é visitada durante a caminhada , isto é, ao visitarmos a energia faz-se a atualização da variável . Por outro lado, a atualização da densidade de estados se da por um fator multiplicativo () controlado ao longo da simulação para que seja muito próximo de 1 ao final das caminhadas.
Podemos descrever os passos do algoritmo da seguinte maneira:
- Inicializamos as densidades de energias com para todo , da mesma forma para todo .
- Inicializamos e um sistema de spins de valor 1 e -1 aleatoriamente distribuídos.
- O valor de é arbitrário e deve ser escolhido não muito pequeno, pois irá fazer com que a simulação demore muito tempo para explorar diversas energias, por outro lado se escolhido muito grande, levará a erros estatísticos significativos.
- Começamos a caminhada inicial escolhendo aleatoriamente um dos spins e mudando o seu estado.
- Se denotamos como a energia antes da mudança de estado do spin selecionado e como a energia após, aceitamos este novo estado com a seguinte probabilidade:
- Se aceitarmos a mudança de estado do spin, fazemos as atualizações de e como e respectivamente.
- Se não aceitarmos a mudança de estado do spin, fazemos as atualizações de e como e respectivamente, de maneira a recontar o estado .
- Destaca-se que em ambos os casos usamos , pois ao longo da simulação acabamos usando números muito grandes.
- Faz-se esta caminhada aleatória nos diferentes estados do sistema até que o histograma esteja aproximadamente plano.
- O critério para decidir se um histograma está plano é arbitrário. Para um hamiltoniano Ising 2D este critério pode ser definido tão alto quanto 95% (i.e. todos os valores de devem ser pelo menos 95% de ), porém valores mais altos que isso podem resultar no programa nunca identificando o histograma como plano.
- Checa-se se está plano a cada 10000 passos MC. Quando está plano, podemos dizer que todos os estados foram visitados uma quantidade de vezes aproximadamente igual e a densidade de estados converge ao valor real com precisão da ordem de .
- Reduz-se o fator da seguinte maneira , reinicia-se o histograma e recomeça-se a caminhada aleatória com este novo fator . (Todos os parâmetros não mencionados neste passo permanecem intocados).
- Continuamos executando os passos 5-7, reduzindo o fator segundo a seguinte expressão
- Encerra-se a simulação quando estiver da ordem do erro desejado.
- Claro que pode ser escolhido arbitrariamente pequeno, mas sempre com um certo limite razoável , ou a simulação pode tomar tempos não razoáveis para completar.
Observações sobre o algoritmo
Nesta seção discutimos algumas observações importantes a se levar em conta na implementação do método de amostragem de Wang-Landau
Fator de modificação f
Quando tratamos da atualização do fator , a expressão é apenas uma recomendação, uma vez que outros valores de podem ser escolhidos para uma atualização do tipo . Não obstante, é adequado para grande parte dos sistemas estudados, resultando em boa acurácia em relativamente pouco tempo de simulação.
Implementação paralela
A simulação pode ser melhorada ainda fazendo múltiplas caminhadas aleatórias paralelamente no espaço de energias. Restringindo o alcance das caminhadas proporcionalmente com o número de caminhantes em paralelo (e.g. No caso de 2 caminhantes simultâneos, dividimos o espaço de energias em 2 e restringimos um caminhante para a metade inferior das energias, e o outro para a parte superior) e depois juntando as densidades de estados resultantes.
Balanço detalhado
A condição de balanço detalhado inicialmente não é satisfeita uma vez que é constantemente modificada durante a caminhada aleatória. Porém após várias iterações, a condição é satisfeita a medida que se aproxima de 1. Observa-se que se é a probabilidade de transição da energia para a energia , utilizando a equação do passo 4 do algoritmo temos que:
Podemos reescrever a equação de uma forma mais familiar
que é a condição de balanceamento detalhado, uma vez que interpretamos que como a probabilidade do sistema possuir a energia e analogamente para . Concluímos então que a condição de balanço detalhado é satisfeita com precisão proporcional a .