Modelo de Potts - 2D: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 1: Linha 1:
=O Modelo=
=O Modelo=


Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél <math>q</math> da seguinte forma: <math>\theta_n = \frac{2\pi n}{q}</math>. A quantidade <math>\theta_n</math> nos fornece as possíveis orientações para os spins. fornece as orientações possíveis para os spins. Os valores de <math>n</math> podem assumir os valores <math>n=0,1,2,...</math>.
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél <math>q</math> da seguinte forma: <math>\theta_n = \frac{2\pi n}{q}</math>. A quantidade <math>\theta_n</math> nos fornece as possíveis orientações para os spins. Os valores que <math>n</math> pode assumir são <math>n=0,1,2,...,q-1</math>.


O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como

Edição das 10h24min de 17 de outubro de 2022

O Modelo

Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél da seguinte forma: . A quantidade nos fornece as possíveis orientações para os spins. Os valores que pode assumir são .

O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como onde é a constante de acoplamento que determina a intensidade da interação e é a delta de Kronecker, definida como 0 se e 1 se .

Relação com o Modelo de Ising

O Modelo de Ising é obtido quando tomamos na expressão para .

O Hamiltoniano de Ising pode ser escrito como o Hamiltoniano do Potts mais uma constante aditiva

Se incluírmos o campo magnético, o Hamiltoniado fica

Algoritmo de Metropolis

Vamos implementar o Modelo de Potts utilizando o algoritmo de Metropolis.

O algoritmo de Metropolis é um método de Cadeia de Markov Monte Carlo (MCMC) para obter amostras aleatórias a partir de uma distribuição de probabilidade da qual a amostragem direta é difícil. O procedimento para a implementação do algoritmo é apresentado abaixo.

1. Inicialize a) Escolha um estado inicial ; b) Coloque 2. Itere a) Gere um estado candidato aleatório de acordo b) Calcule a probabilidade de aceitação c) Aceite ou rejeite: 1) Gere um número aleatório uniforme ; 2) E se , aceite o novo estado e defina ; 3) E se , rejeite o novo estado e copie o estado antigo para frente ; 4) Incremente: coloque t = t + 1

Em nosso caso, a distribuição é , onde

Resultados

[[Arquivo: <arquivo> |thumb|right|500px| Simulação com o algoritmo de Metropolis para .]]

Códigos utilizados

Metropolis - Potts 2D

Referências

D. P. Landau, K. Binder. A Guide Monte Carlo Simulations in Statistical Physics. Cambridge University. New York. 2000.

L. M. Barone, E. Marinari, G. Organtini, F. Ricci-Tersengui. Scientific Programming: C-Language, Algorithms and Models in Science. World Scientific. Singapore. 2013.