Modelo de Potts - 2D: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 1: | Linha 1: | ||
=O Modelo= | =O Modelo= | ||
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no | Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que depedem de <math>q</math>, onde <math>\theta_n = \frac{2\pi n}{q}</math> fornece as orientações possíveis para os spins. Os valores de <math>n</math> podem assumir os valores <math>n=0,1,2,...</math>. | ||
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como | O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como | ||
Edição das 10h20min de 17 de outubro de 2022
O Modelo
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que depedem de , onde fornece as orientações possíveis para os spins. Os valores de podem assumir os valores .
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como onde é a constante de acoplamento que determina a intensidade da interação e é a delta de Kronecker, definida como 0 se e 1 se .
Relação com o Modelo de Ising
O Modelo de Ising é obtido quando tomamos na expressão para .
O Hamiltoniano de Ising pode ser escrito como o Hamiltoniano do Potts mais uma constante aditiva Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_I = H_p + \sum_{(i,j)}\frac{J}{2} = -J\sum_{(i,j)} \delta(s_i,s_j) + \sum_{(i,j)}\frac{J}{2} = -\frac{J}{2}\sum_{(i,j)} (2\delta(s_i,s_j) - 1) }
Se incluírmos o campo magnético, o Hamiltoniado fica Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_p = -J \sum_{(i,j)} \delta(s_i,s_j) - \sum_i \frac{1}{\beta} h_i s_i}
Algoritmo de Metropolis
Vamos implementar o Modelo de Potts utilizando o algoritmo de Metropolis.
O algoritmo de Metropolis é um método de Cadeia de Markov Monte Carlo (MCMC) para obter amostras aleatórias a partir de uma distribuição de probabilidade da qual a amostragem direta é difícil. O procedimento para a implementação do algoritmo é apresentado abaixo.
1. Inicialize a) Escolha um estado inicial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} ; b) Coloque Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0} 2. Itere a) Gere um estado candidato aleatório Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'} de acordo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x'|x_t)} b) Calcule a probabilidade de aceitação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(x',x_t) = min \left/(1,\frac{P(x')}{P(x_t)} \frac{g(x_t | x'}{x'|x_t} \right)} c) Aceite ou rejeite: 1) Gere um número aleatório uniforme Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u \in [0,1]} ; 2) E se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u\leq A(x',x_t)} , aceite o novo estado e defina Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{t+1}=x'} ; 3) E se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u>A(x',x_t)} , rejeite o novo estado e copie o estado antigo para frente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{t+1}=x_t} ; 4) Incremente: coloque t = t + 1
Em nosso caso, a distribuição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(x,x')}{A(x',x)}} é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-\beta \Delta E}} , onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E=E_{x'} - E_{x}}
Resultados
[[Arquivo: <arquivo> |thumb|right|500px| Simulação com o algoritmo de Metropolis para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = 1K} .]]
Códigos utilizados
Referências
D. P. Landau, K. Binder. A Guide Monte Carlo Simulations in Statistical Physics. Cambridge University. New York. 2000.
L. M. Barone, E. Marinari, G. Organtini, F. Ricci-Tersengui. Scientific Programming: C-Language, Algorithms and Models in Science. World Scientific. Singapore. 2013.