Cahn1ddiflog: mudanças entre as edições
Ir para navegação
Ir para pesquisar
(Criou página com '<code lang = "python"> import numpy as np import matplotlib.pyplot as plt from scipy.fft import rfft, irfft, rfftfreq import os def cahnexp1d(cc, c1, c2): cc1 = np.copy(cc...') |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
< | <source lang = "python"> | ||
import numpy as np | import numpy as np | ||
import matplotlib.pyplot as plt | import matplotlib.pyplot as plt | ||
Linha 91: | Linha 91: | ||
plt.yscale("log") | plt.yscale("log") | ||
plt.savefig(f".\\1d\\aaaaa{t:.6f}.png", dpi = tamanho) | plt.savefig(f".\\1d\\aaaaa{t:.6f}.png", dpi = tamanho) | ||
</ | </source> |
Edição atual tal como às 00h52min de 1 de outubro de 2022
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import rfft, irfft, rfftfreq
import os
def cahnexp1d(cc, c1, c2):
cc1 = np.copy(cc)*c1
cc2 = np.copy(cc)*c2
cc3 = np.copy(cc**3)*c1
for i in range(l):
n = i - 2
cc[n] = ( 2*(cc1[n] - cc3[n]) + (cc3[n-1] + cc3[n+1] -1*(cc1[n-1] + cc1[n+1]))
-1*(cc2[n-2] + cc2[n+2] + 6*cc2[n])
+(4*cc2[n-1] + 4*cc2[n+1])
) + cc[n]
return cc
def cahnfourier1d(cc, k2, k4):
cct = rfft(cc)
cct3 = rfft(cc**3 - cc)
cct = cct + difd*dt*(-k2*(cct3) - k4*cct)
cc = irfft(cct)
return cc
np.random.seed(4)
xmin = 0
xmax = 1
tmin = 0
tmax = 0.5
dt = 1/22000000
dx = 1/128
difd = 1
gamma = (3.4/128)**2
l = int((xmax/dx))
k = rfftfreq(l, dx/(2*np.pi))
c1 = difd*dt/(dx**2)
c2 = gamma*c1/(dx**2)
k2 = k**2
k4 = (k2**2)*gamma
ccexp = np.random.rand(l)*2 - 1
ccfourier = np.copy(ccexp)
t = 0
tamanho = l/2
plt.figure(figsize=(8, 8))
plt.yscale("log")
os.makedirs(f".\\1d", exist_ok = True)
dif1, dif2, dif3, dif4 = [], [], [], []
tt = np.arange(dt, tmax + dt, dt)
u = 0
while (t < tmax):
ccfourier = cahnfourier1d(ccfourier, k2, k4)
ccexp = cahnexp1d(ccexp, c1, c2)
if u%1000 == 0:
diferenca = abs(ccexp-ccfourier)
diferencas = [diferenca[0], diferenca[42], diferenca[75], diferenca[103]]
dif1.append(diferencas[0])
dif2.append(diferencas[1])
dif3.append(diferencas[2])
dif4.append(diferencas[3])
t = round(t + dt, int(-np.log10(dt) + 5))
u+=1
tt = np.linspace(dt, tmax, len(dif1))
plt.title(f"Tempo final: {t:.7f}")
plt.plot(tt, dif1)
plt.plot(tt, dif2)
plt.plot(tt, dif3)
plt.plot(tt, dif4)
plt.yscale("log")
plt.savefig(f".\\1d\\aaaaa{t:.6f}.png", dpi = tamanho)