Grupo2 - Ondas1: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 32: Linha 32:
===Método de Lax-Friedrichs===
===Método de Lax-Friedrichs===


Esse método consiste em discretizar as equações no esquema FTCS, ou seja:
Esse método consiste em discretizar as equações no esquema FTCS, ou seja


<math> v_{j}^{n+1} = v_j^n + \frac{\Delta t}{2\Delta x}(w_{j+1}^{n} - w_{j-1}^{n}) </math>,  
<math> v_{j}^{n+1} = v_j^n + \frac{\Delta t}{2\Delta x}(w_{j+1}^{n} - w_{j-1}^{n}) </math>,  
Linha 39: Linha 39:
<math> w_{j}^{n+1} = w_j^n + \frac{\Delta t}{2\Delta x}(v_{j+1}^{n} - v_{j-1}^{n}) </math> ,
<math> w_{j}^{n+1} = w_j^n + \frac{\Delta t}{2\Delta x}(v_{j+1}^{n} - v_{j-1}^{n}) </math> ,


Entretanto, para tornarmos o método estável, é necessário trocarmos os termos <math> v_j^n </math> e <math> w_j^n </math> por sua média espacial:
Entretanto, para tornarmos o método estável, é necessário trocarmos os termos <math> v_j^n </math> e <math> w_j^n </math> por sua média espacial




Linha 49: Linha 49:
<math> u_{j}^{n+1} = u_{j}^{n} + v_{j}^{n}\Delta t </math>,
<math> u_{j}^{n+1} = u_{j}^{n} + v_{j}^{n}\Delta t </math>,


Aqui agora vamos unir todas as equações para que no programa possamos iterar apenas uma equação ao invés de 3.
Agora vamos unir todas as equações, para que no programa possamos iterar apenas uma equação ao invés de três.





Edição das 00h34min de 24 de outubro de 2017

Introdução

A modelagem numérica vem se tornando cada vez mais uma ferramenta indispensável para um engenheiro. Tal modelagem pode trazer informações importantes para entender como melhor abordar o desenvolvimento de um projeto, neste caso, um que envolva ondas. Nós, como futuros engenheiros físicos, pensamos em trazer um problema mais "concreto", de engenharia costeira e portuária, que pode ou não surgir em nossas vidas profissionais mas cujo método de solução certamente estará presente. Aqui será apresentado um modelo baseado em uma condição inicial e um perfil topográfico do local estudado que descreve a evolução temporal de uma onda.

Para testarmos os diferentes métodos, utilizaremos a equação da onda em uma dimensão, que é uma equação diferencial parcial de segunda ordem, para modelarmos uma corda:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^{2} u}{\partial x^{2}} }

em que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x, t) } é o deslocamento vertical da corda e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<x<L } , com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } o comprimento da corda.

Admitindo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=1} ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial t} \Big( \frac{\partial u}{\partial t} \Big) = \frac{\partial}{\partial x} \Big( \frac{\partial u}{\partial x} \Big) } .

Uma vez que os métodos citados abaixo são para equações de primeira ordem, é necessário separarmos a equação em um sistema de equações, fazendo a substituição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{\partial u}{\partial t} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w= \frac{\partial u}{\partial x} } :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \begin{array}{cc} \frac{\partial v}{\partial t}=\frac{\partial w}{\partial x} \\ \\ \frac{\partial v}{\partial x}=\frac{\partial w}{\partial t} \\ \end{array}\right.}

As condições de contorno são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(0, t) = u(L, t) = 0 } (pontas fixas), e as condições iniciais são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x,0) = \sin{\frac{\pi x}{L}} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t}(x, 0) = 0 }

Algoritmos

Apresentaremos aqui três abordagens diferentes para a solução da equação diferencial parcial apresentada, e após, seus respectivos erros associados.

Método de Lax-Friedrichs

Esse método consiste em discretizar as equações no esquema FTCS, ou seja

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+1} = v_j^n + \frac{\Delta t}{2\Delta x}(w_{j+1}^{n} - w_{j-1}^{n}) } ,


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j}^{n+1} = w_j^n + \frac{\Delta t}{2\Delta x}(v_{j+1}^{n} - v_{j-1}^{n}) } ,

Entretanto, para tornarmos o método estável, é necessário trocarmos os termos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_j^n } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_j^n } por sua média espacial


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+1} = \Big( \frac{ v_{j-1}^{n} + v_{j+1}^{n}}{2} \Big) + \frac{\Delta t}{2\Delta x}(w_{j+1}^{n} - w_{j-1}^{n}) } ,


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j}^{n+1} = \Big( \frac{ w_{j-1}^{n} + w_{j+1}^{n}}{2} \Big) + \frac{\Delta t}{2\Delta x}(v_{j+1}^{n} - v_{j-1}^{n}) } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{j}^{n+1} = u_{j}^{n} + v_{j}^{n}\Delta t } ,

Agora vamos unir todas as equações, para que no programa possamos iterar apenas uma equação ao invés de três.


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{j}^{n+1} = u_{j}^{n} + \Big( \frac{u_{j-1}^{n} + u_{j+1}^{n}}{2} \Big) - \Big( \frac{u_{j-1}^{n-1} + u_{j+1}^{n-1}}{2} \Big) + \frac{(\Delta t)^2}{4(\Delta x)^2} \Big( u_{j-2}^{n-1} -2u_{j}^{n-1} + u_{j+2}^{n-1}\Big) } ,

Método de Leapfrog

Para v temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ v_{j}^{n+\frac{1}{2}} - v_{j}^{n-\frac{1}{2}}}{\Delta t} = \frac{ w_{j+\frac{1}{2}}^{n} - w_{j-\frac{1}{2}}^{n} }{\Delta x} } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+\frac{1}{2}} = v_{j}^{n-\frac{1}{2}} + \frac{\Delta t}{\Delta x} (w_{j+\frac{1}{2}}^{n} - w_{j-\frac{1}{2}}^{n} ) } ,

Para w temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ v_{j+1}^{n+\frac{1}{2}} - v_{j}^{n+\frac{1}{2}}}{\Delta x} = \frac{ w_{j+\frac{1}{2}}^{n+1} - w_{j+\frac{1}{2}}^{n} }{\Delta t} } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j+\frac{1}{2}}^{n+1} = w_{j+\frac{1}{2}}^{n} + \frac{\Delta t}{\Delta x} \Big(v_{j+1}^{n+\frac{1}{2}} - v_{j}^{n+\frac{1}{2}}\Big) } ,

Para u temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+\frac{1}{2}} = \frac{\partial u}{\partial t} \Big|_{j}^{n+\frac{1}{2}} = \frac{ u_{j}^{n+\frac{1}{2}} - u_j^n}{\Delta t} } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{j}^{n+\frac{1}{2}} = u_j^n + v_{j}^{n+\frac{1}{2}} \Delta t} ,

Juntando todas elas temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{j}^{n+1} = 2u_{j}^{n} - u_{j}^{n-1} + \frac{(\Delta t)^2}{(\Delta x)^2}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}) } ,

Método de Lax-Wendroff de Dois Passos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( v_{j+1}^{n} + v_{j}^{n} ) + \frac{\Delta t }{2\Delta x} (w_{j+1}^{n} - w_{j}^{n}) } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( v_{j}^{n} + v_{j-1}^{n} ) + \frac{\Delta t }{2\Delta x} (w_{j}^{n} - w_{j-1}^{n}) } ,

Para w resulta em:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j}^{n+1} = w_j^n + \frac{\Delta t}{\Delta x} \Bigg[\frac{1}{2}(v_{j+1}^{n} - v_{j-1}^{n}) + \frac{\Delta t}{2\Delta x} (w_{j+1}^{n} - 2 w_{j}^{n} + w_{j-1}^{n})\Bigg] } ,

Agora encontraremos a equação para v:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+1} = v_{j}^{n} + \frac{\Delta t}{\Delta x} \Big(w_{j+\frac{1}{2}}^{n+\frac{1}{2}} - w_{j-\frac{1}{2}}^{n+\frac{1}{2}}\Big) } ,

Sendo que:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( w_{j+1}^{n} + w_{j}^{n} ) + \frac{\Delta t }{2\Delta x} (v_{j+1}^{n} - v_{j}^{n}) } ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{j-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( w_{j}^{n} + w_{j-1}^{n} ) + \frac{\Delta t }{2\Delta x} (v_{j}^{n} - v_{j-1}^{n}) } ,

Para v resulta em:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{j}^{n+1} = v_j^n + \frac{\Delta t}{\Delta x} \Bigg[\frac{1}{2}(w_{j+1}^{n} - w_{j-1}^{n}) + \frac{\Delta t}{2\Delta x} (v_{j+1}^{n} - 2 v_{j}^{n} + v_{j-1}^{n})\Bigg] } ,

E finalmente temos a equação unificada das outras em u:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{j}^{n+1} = 2u_{j}^{n} - u_{j}^{n-1} + \frac{(\Delta t)^2}{2(\Delta x)^2}\Bigg[ \Big(\frac{ u_{j+2}^{n-1} - u_{j}^{n-1}}{2} \Big) - \Big(\frac{u_{j}^{n-1} - u_{j-1}^{n-1}}{2} \Big) + u_{j+1}^{n} - u_{j+1}^{n-1} - 2u_{j}^{n} + 2u_{j}^{n-1} + u_{j-1}^{n} - u_{j-1}^{n-1}\Bigg] } ,

Análise de erros e estabilidade

A análise de erros se torna mais evidente durante a escolha do parâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} , onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \frac{dt}{dx}} . Valores grandes trazem pouca acurácia, e valores pequenos necessitam de muito poder de computação (tempo e dinheiro). Trazemos problemas mais simplificados como um "guia" de escolha do parâmetro.

A partir do cálulo da solução analítica da equação da onda, podemos calcular quanto o valor obtido pelos métodos difere da solução real, o que leva a uma visualização do erro corrente em cada método de integração.

Comparação do erro global entre os três métodos estudados

Podemos observar a ordem com que os erros crescem à medida que o parâmetro k se torna maior. Lembrando que os valores da constante são determinados pela discretização do espaço e do tempo.

Simulação de Propagação de Onda 2D Dependente de Topografia

O modelo mais simples parte da equação da onda [1], acrescentando o termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,y,t)} .

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 u}{\partial t^2} = \Big( \frac{\partial}{\partial x} H(x,y,t) \frac{\partial u}{\partial x}\Big) + \Big( \frac{\partial}{\partial y} H(x,y,t) \frac{\partial u}{\partial y}\Big) - \frac{\partial^2 H}{\partial t^2} } ,


Sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,y,t)} uma representação da profundidade em águas calmas. Em uma situação real, pode-se obtê-la por mapeamento eletrônico do terreno por sistema de sonar.

Exemplo de mapeamento de terreno sub - calota polar feito por AUV (autonomous underwater vehicle)

Como primeira abordagem visando uma análise em 2D, a integração da equação em 1D (mesmo sendo uma situação muito idealizada) já traz resultados interessantes. Podemos observar, por exemplo, que a amplitude da onda cresce perto da costa. Esta informação por si só ajuda na construção de proteção contra quebra de ondas, pois é obtido o tamanho que as mesmas atingem.

Simulação em 1D de ondas perto da margem

É importante notar o quão poderosa é a integração de equações parciais na vida de um engenheiro.

A dependência em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,y,t)} permite um modelo no qual o terreno se modifica com o tempo. Isto é, pode-se observar o efeito que o deslocamento de placas tectônicas, deslizamentos, e até explosões provocam no comportamento das ondas na costa de um país e o reconhecimento de áreas críticas.

Estendendo o algoritmo do Leap-Frog à situação 2D, obtemos, para uma dada condição inicial e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,y,t) = C} , onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} é uma constante:

Simulação em 2D de ondas em águas com profundidade constante, visão de cima
Simulação em 2D de onda em águas com profundidade constante, visão em ângulo


Podemos então, analisar como a mesma condição inicial se porta quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,y,t)} descreve uma gaussiana na origem:


Simulação em 2D de ondas em águas com gaussiana na origem, visão de cima
Simulação em 2D de onda em águas com gaussiana na origem, visão em ângulo

Bibliografia

1"The Wave Equation in 1D and 2D," por Knut–Andreas Lie, Dept. of Informatics, University of Oslo; disponível em: [1]; Último acesso em 23/10/2017.

2"Digital terrain mapping of the underside of sea ice from a small AUV," por Wadhams, M. J. Doble; disponível em: DOI: 10.1029/2007GL031921 ; Último acesso em 23/10/2017.

2 Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.