Equação de Águas Rasas: mudanças entre as edições
| Linha 3: | Linha 3: | ||
=== Forma Conservativa === | === Forma Conservativa === | ||
A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele. | |||
A | A conservação de massa é dada por: | ||
<math>\nabla \cdot v = 0</math> | <math>\nabla \cdot v = 0</math> | ||
| Linha 10: | Linha 11: | ||
<math>\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z} = 0</math> | <math>\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z} = 0</math> | ||
Onde <math>\vec{u}</math> é a velocidade na direção <math>x</math>, <math>\vec{v}</math> é a velocidade na direção <math>y</math> e <math>\vec{w}</math> é a velocidade na direção <math>z</math>. | |||
A conservação de momento é dada por: | |||
Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir. | Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir. | ||
Edição das 22h34min de 7 de outubro de 2021
(EM EDIÇÃO) Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra
Forma Conservativa
A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele.
A conservação de massa é dada por:
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} .
A conservação de momento é dada por:
Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{h^{t + \Delta t}_{i, j} - h^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(hu)^t_ {i+1,j} - (hu)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(hv)^t_ {i,j+1} - (hv)^t_{i, j-1}}{2 \Delta y} \right ] = 0}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{hu)^{t + \Delta t}_{i, j} - (hu)^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(hu^2 + \cfrac{1}{2}gh^2)^t_{i+1, j} - (hu^2 + \cfrac{1}{2}gh^2)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(huv)^t_{i, j+1} - (huv)^t_{i, j-1}}{2 \Delta y} \right ] = -g h^{t}_{i, j} b_{x. i, j}}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{(hv)^{t + \Delta t}_{i, j} - (hv)^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(huv)^t_{i+1, j} - (huv)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(hv^2 + 1/2 gh^2)^t_{i, j+1} - (hv^2 + 1/2 gh^2)^t_{i, j-1}}{2 \Delta y} \right ] = -g h^{t}_{i, j} b_{y. i, j} }
Resolvendo pelo método de FTCS (para frente no tempo) e ajustando aos limites de estabilidade, temos como resultado:
.... aqui gráfico ....
Para esse desenvolvimento encontramos algumas dificuldades para resolução do sistema de equações.