Problema de Fermi-Pasta-Ulam: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 38: Linha 38:
Em que <math> \ddot{x_j} </math> é a aceleração da j-ésima partícula, com ela conseguimos integrar o movimento das partículas.
Em que <math> \ddot{x_j} </math> é a aceleração da j-ésima partícula, com ela conseguimos integrar o movimento das partículas.


'''[TEM QUE ESCREVER AQUI]''' A Energia do sistema pode ser calculada para cada oscilação, porém para obtermos algum resultado e comparar com o estudo de fermi pasta ulam, calculamos a energia dos primeiros modos de vibração da corda para demontrar o comportamento visívelmente períodico destas energias.


[[arquivo:energias.png]]


== Implementação ==
== Implementação ==

Edição das 00h00min de 26 de maio de 2021

Grupo: Augusto M Giani e Henrique Padovani

O objetivo deste trabalho é replicar os resultados do problema proposto por Fermi-Pasta-Ulam em 1953 [1] sobre sistemas dinâmicos não lineares. As análises serão sobre a solução dos modos de vibração comparados à solução analítica para poucas massas e também sobre a energia do sistema para os modos de oscilação, enquanto o sistema evolui no tempo.

O Problema

O Problema proposto constitui-se de simulações em uma rede de partículas ligadas entre si através de molas que obedecem a Lei de Hooke com uma correção não-linear quadrática ou cúbica [2]

  • Figura 1. Problema de Fermi-Pasta-Ulam, molas acopladas.

A lei de forças que rege o comportamento deste sistema é:

.

Onde e a deformação a cada 2 massas acopladas (), é a constante elástica da mola, é um parâmetro de deformação arbitrário que controla a correção não linear quadrática e é o parâmetro que controla a correção cúbica. Importante ressaltar que se é possuir assumir um valor não nulo, real, é igual a zero no nosso sistema, ou vice-versa. Não estamos analisando correções quadráticas somadas com correções cúbicas neste trabalho.

Motivação: O que era esperado e o paradoxo XXX

Escrever a motivação ...

Discretização

A discretização deste problema gira em torno de abrir a equação das forças, e com o termo de aceleração, iterar o movimento das partículas a partir disso [3]. Partimos do problema com correção quadrática, ou seja, . Partindo de:

,

subtituímos pelas variáveis discretas:

,

Chegamos em:

Em que é a aceleração da j-ésima partícula, com ela conseguimos integrar o movimento das partículas.

[TEM QUE ESCREVER AQUI] A Energia do sistema pode ser calculada para cada oscilação, porém para obtermos algum resultado e comparar com o estudo de fermi pasta ulam, calculamos a energia dos primeiros modos de vibração da corda para demontrar o comportamento visívelmente períodico destas energias.

Arquivo:Energias.png

Implementação

Usamos XX partículas, com modo de oscilação YY


Resultados

SUBTITULOS

negrito, Simultaneous OverRelaxation


  • Problema da borda carregada eletricamente.
  • Gráfico da solução analítica somando até o termo n=199.


### Exemplo da evolução temporal no método de relaxação ###
### Exemplo para o algoritmo de jacobi, Equação de Laplace ###
# P é a matriz do potencial no tempo n
# Q é a matriz do potencial no tempo n+1

while t < tmax: # Loop temporal
  
  for i in range(1,L+1):  # Loop em x
    for j in range(1,L+1): # Loop em y
      Q[i][j] = (P[i+1][j] + P[i-1][j] + P[i][j+1] + P[i][j-1])/4 
  
  P = Q.copy()
  t = t + td

plt.plot(x,y,P) # plotagem dos gráficos


Solução numérica do problema da borda carregada.


  • Erro relativo médio para a solução de Gauss-Seidel para várias iterações.

Link para Códigos

Fizemos no ambiente Colab em .ipynb, segue link do github:[1]

Referências

  1. ANDRADE, D. X.; ANJOS, P. H. R.; ASSIS, P. E. G.. Sobre a conexão entre alguns modelos físicos não-lineares. Rev. Bras. Ensino Fís., São Paulo , v. 39, n. 1, e1307, 2017 . Disponível em <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407&lng=pt&nrm=iso>. http://dx.doi.org/10.1590/1806-9126-rbef-2016-0083.
  2. http://www.physics.utah.edu/~detar/phys6720/handouts/fpu/FermiCollectedPapers1965.pdf - Fermi, Pasta, Ulam, Studies of non linear problems
  3. https://en.wikipedia.org/wiki/Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou_problem