Termostato de Nosé-Hoover: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 49: | Linha 49: | ||
Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE. Entretanto, neste sistema, <math> Q </math> precisa ser determinado por tentativa e erro. Caso o valor escolhido seja muito pequeno, o sistema possuirá muitas oscilações, logo é necessário aumentar o valor de <math> Q </math>, porém caso o valor escolhido seja muito alto, o tempo para atingir equilíbrio térmico será demasiadamente longo. Outro problema do termostato de Nose é o fato de que, por as velocidades serem escaladas com o <math> s </math>, o tempo também será escalado com <math> s </math>, o que não acontece em sistemas reais e extendidos. <ref name=L5></ref> | Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE. Entretanto, neste sistema, <math> Q </math> precisa ser determinado por tentativa e erro. Caso o valor escolhido seja muito pequeno, o sistema possuirá muitas oscilações, logo é necessário aumentar o valor de <math> Q </math>, porém caso o valor escolhido seja muito alto, o tempo para atingir equilíbrio térmico será demasiadamente longo. Outro problema do termostato de Nose é o fato de que, por as velocidades serem escaladas com o <math> s </math>, o tempo também será escalado com <math> s </math>, o que não acontece em sistemas reais e extendidos. <ref name=L5></ref> | ||
Para contornar esses problemas, Hoover utilizou uma parametrização diferente, sem o termo <math> s. </math> <ref name=hoover> William G. Hoover, '''Canonical Dynamics: Equilibrium phase-space distributions''', Physical Review A, 1985, Vol. 31, No. 3. </ref>. O parâmetro <math> s </math> pode ser removido das equações reescrevendo , | === Termostato de Nosé-Hoover | ||
Para contornar esses problemas, Hoover utilizou uma parametrização diferente, sem o termo <math> s. </math> <ref name=hoover> William G. Hoover, '''Canonical Dynamics: Equilibrium phase-space distributions''', Physical Review A, 1985, Vol. 31, No. 3. </ref>. O parâmetro <math> s </math> pode ser removido das equações reescrevendo-as utilizando <math> \bold r </math>, <math> \bold \dot r </math> e <math> \bold \ddot r </math>. Assim, as equações de movimento do termostato de Nosé-Hoover são: | |||
<math> \bold \dot r </math> | |||
TERMINAR EQUAÇÕES | TERMINAR EQUAÇÕES | ||
Edição das 19h24min de 25 de maio de 2021
Grupo: Gabriel Azevedo, Rafael Abel e Thierre F. Conceição.
Termostato de Nosé-Hoover
O termostato de Nosé-Hoover é um algoritmo utilizado para simulação de dinâmica molecular. Esse ensemble é relevante quando o sistema em estudo está em contato com um banho térmico, para manter a temperatura constante[1]. A maneira que o algoritmo de Nosé-Hoover mantém a temperatura constante é a partir da adição de uma variável dinâmica fictícia (um "agente" externo), que atua sobre as velocidades das partículas no sistema, as acelerando ou desacelerando até que estas atinjam a temperatura desejada.
ADICIONAR O RESTO DAS INFORMAÇÕES E TAMBÉM INFOS SOBRE LJ
Método
Termostato de Nose
Para entender o termostado de Nóse-Hoover, primeiramente será mostrado o termostato de Nosé[2].
Este termostato atribui coordenadas generalizados adicionais Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } e o seu momento conjugado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_s } ao banho térmico. O fator Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } é definido como um fator de escala das velocidades, onde:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot \bold v = s\dot \bold r = s\bold p/m}
E também são definidas as energia potenciais e cinética associadas a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U_s = (N_f + 1)k_BTln(s) } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal K_s = \frac{1}{2}Q\dot s^2 = \frac{p_s^2}{2Q} }
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } é entendido como a "inércia térmica", ele determina a escala do tempo da flutuação de temperatura.
O Lagrangiano do sistema extendida (consistente das partículas e do banho térmico) então é postulado como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal L = \mathcal K + \mathcal K_s - \mathcal U - \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} - \mathcal U(\bold r) - (N_f + 1)k_BTln(s)}
Como não é explicitamente dependente do tempo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N = \mathcal K + \mathcal K_s + \mathcal U + \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} + \mathcal U(\bold r) + (N_f + 1)k_BTln(s)}
Como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N } se conserva, esse sistema é numericamente estável [3]
Assim, as equações de movimento podem ser deduzidas:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r_i = \frac{\partial \mathcal H_N}{\partial \bold p_i} = \bold p_i/(m_is^2)}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot p = -\frac{\partial \mathcal H_N}{\partial \bold r_i} = \bold f_i} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } é o número de graus de liberdade do sistema;
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot s = \frac{\partial \mathcal H_N}{\partial p_s} = p_s/Q}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_s = -\frac{\partial \mathcal H_N}{\partial s} = \sum_i \frac{\bold p_i^2}{m_is^3} - (N_f + 1)k_BT/s }
Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE. Entretanto, neste sistema, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } precisa ser determinado por tentativa e erro. Caso o valor escolhido seja muito pequeno, o sistema possuirá muitas oscilações, logo é necessário aumentar o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } , porém caso o valor escolhido seja muito alto, o tempo para atingir equilíbrio térmico será demasiadamente longo. Outro problema do termostato de Nose é o fato de que, por as velocidades serem escaladas com o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } , o tempo também será escalado com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } , o que não acontece em sistemas reais e extendidos. [3]
=== Termostato de Nosé-Hoover
Para contornar esses problemas, Hoover utilizou uma parametrização diferente, sem o termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s. } [4]. O parâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } pode ser removido das equações reescrevendo-as utilizando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r } , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \ddot r } . Assim, as equações de movimento do termostato de Nosé-Hoover são:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r }
TERMINAR EQUAÇÕES
ADICIONAR EQUAÇÕES DAS CADEIAS DE NOSE HOOVER
Resultados
Programas Utilizados
/*Simulação de DM de um fluido de Lennard-Jones com termostato Nose-Hoover Compile usando "gcc -o NVT_NH NVT_NH.c -lm -lgsl" */
/*********************************************/
#include <stdio.h>
#include <stdlib.h>
return 0;
}
Referências
- ↑ https://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf
- ↑ NOSÉ, Shuichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, Vol. 52, No. 2, 255-268
- ↑ 3,0 3,1 http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf
- ↑ William G. Hoover, Canonical Dynamics: Equilibrium phase-space distributions, Physical Review A, 1985, Vol. 31, No. 3.