Termostato de Nosé-Hoover: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 33: Linha 33:


Como <math> \mathcal H_N </math> se conserva, esse sistema é numericamente estável <ref name=L5> http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf </ref>
Como <math> \mathcal H_N </math> se conserva, esse sistema é numericamente estável <ref name=L5> http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf </ref>
Assim, as equações de movimento podem ser deduzidas:
<math> \bold \dot r_i = \frac{\partial \mathcal H_N}{\partial \bold p_i} = \bold p_i/(m_is^2)</math>
<math> \bold \dot p = -\frac{\partial \mathcal H_N}{\partial \bold r_i} = \bold f_i</math>
onde <math> f </math> é o número de graus de liberdade do sistema;
<math> \dot s = \frac{\partial \mathcal H_N}{\partial p_s} = p_s/Q</math>
<math> \dot p_s = -\frac{\partial \mathcal H_N}{\partial s} = \sum_i \frac{\bold p_i^2}{m_is^3} - (N_f + 1)k_BT/s </math>
Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE.


== Resultados ==
== Resultados ==

Edição das 22h14min de 24 de maio de 2021

Grupo: Gabriel Azevedo, Rafael Abel e Thierre F. Conceição.

Termostato de Nosé-Hoover

O termostato de Nosé-Hoover é um algoritmo utilizado para simulação de dinâmica molecular. Este algoritmo utiliza um ensemble NVT, onde o número de partículas (N), o volume (V) e a temperatura (T) são mantidas constantes. Esse ensemble é relevante quando o sistema em estudo está em contato com um banho térmico[1].

A maneira que o algoritmo de Nosé-Hoover mantém a temperatura constante é a partir da adição de uma variável dinâmica fictícia (um "agente" externo), que atua sobre as velocidades das partículas no sistema, as acelerando ou desacelerando até que estas atinjam a temperatura desejada.

Método

Para entender o termostado de Nóse-Hoover, primeiramente será mostrado o termostato de Nosé[2].

Este termostato atribui coordenadas generalizados adicionais e o seu momento conjugado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_s } ao banho térmico. O fator Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } é definido como um fator de escala das velocidades, onde:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot \bold v = s\dot \bold r = s\bold p/m}

E também são definidas as energia potenciais e cinética associadas a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U_s = (N_f + 1)k_BTln(s) } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal K_s = \frac{1}{2}Q\dot s^2 = \frac{p_s^2}{2Q} }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } é entendido como a "inércia térmica", ele determina a escala do tempo da flutuação de temperatura.

O Lagrangiano do sistema extendida (consistente das partículas e do banho térmico) então é postulado como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal L = \mathcal K + \mathcal K_s - \mathcal U - \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} - \mathcal U(\bold r) - (N_f + 1)k_BTln(s)}

Como não é explicitamente dependente do tempo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N = \mathcal K + \mathcal K_s + \mathcal U + \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} + \mathcal U(\bold r) + (N_f + 1)k_BTln(s)}

Como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N } se conserva, esse sistema é numericamente estável [3]

Assim, as equações de movimento podem ser deduzidas:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r_i = \frac{\partial \mathcal H_N}{\partial \bold p_i} = \bold p_i/(m_is^2)}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot p = -\frac{\partial \mathcal H_N}{\partial \bold r_i} = \bold f_i} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } é o número de graus de liberdade do sistema;

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot s = \frac{\partial \mathcal H_N}{\partial p_s} = p_s/Q}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_s = -\frac{\partial \mathcal H_N}{\partial s} = \sum_i \frac{\bold p_i^2}{m_is^3} - (N_f + 1)k_BT/s }

Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE.

Resultados

Programas Utilizados

Referências

  1. https://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf
  2. NOSÉ, Shuichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, Vol. 52, No. 2, 255-268
  3. http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf