Modelo de Potts 2D: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 21: Linha 21:


Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos. A quantidade de spins no modelo é <math>N = L\times L</math> com interações ferromagnéticas com <math>J = 1</math>, favorecendo vizinhanças de spins que compartilham o mesmo valor de <math>q</math> para minimizar a energia do sistema.
Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos. A quantidade de spins no modelo é <math>N = L\times L</math> com interações ferromagnéticas com <math>J = 1</math>, favorecendo vizinhanças de spins que compartilham o mesmo valor de <math>q</math> para minimizar a energia do sistema.
== Método de Monte Carlo ==
=== Algorítmo de Metrópolis ===
Para o método de Monte Carlo responsável por gerar configurações do sistema, utilizaremos o Algorítmo de Metropolis. O algoritmo funcionará escolhendo repetidamente um novo estado <math>\nu</math> e aceitando ou rejeitando o estado de acordo com uma probabilidade de aceitação <math>A(\mu \rightarrow \nu)</math> de transitar de um estado antigo <math>\mu</math> para o novo estado <math>\nu</math>. O algoritmo que iremos descrever utiliza a dinâmica de inversão única de spins, onde apenas um spin será invertido aleatoriamente para termos um novo estado a ser testado.
É válido notar que a dinâmica de inversão única de spins não é o que caracteriza o método de Metropolis, pois ainda poderíamos ter esse método ao utilizarmos uma dinâmica com mais spins sendo invertidos simultaneamente.
Temos que a condição de balanceamento detalhado é dada por <ref>M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.</ref>:
<math>\frac{A(\mu \rightarrow \nu)}{A(\nu \rightarrow \mu)} = e^{-\frac{\Delta E}{k_BT}}, \qquad (3)</math>
onde <math>\Delta E = E_\nu - E_\mu</math>.
Vamos supor que tenhamos os estados <math>\mu</math> e <math>\nu</math> e que temos a relação de energias: <math>E_\mu < E_\nu</math>. Então, a maior das duas chances de aceitação é <math>A(\nu \rightarrow \mu)</math>, portanto iremos igualar essa probabilidade a 1.
Para que <math>(3)</math> seja respeitada, iremos definir o valor de <math>A(\mu \rightarrow \nu)</math> como <math>e^{-\frac{\Delta E}{k_BT}}</math>. Temos, assim, o algoritmo de Metropolis:
<math>A(\mu \rightarrow \nu) = \begin{cases}
e^{-\frac{\Delta E}{k_BT}}, \qquad \text{se } \Delta E > 0\\\\
1, \qquad \qquad \text{caso contrario}.
\end{cases}</math>
Dessa forma, sempre que tivermos um estado cuja energia seja menor do que a do estado atual, iremos aceitar a transição, mas se a energia for maior, teremos uma pequena probabilidade de trocarmos de estado.

Edição das 21h04min de 9 de maio de 2021

Modelo de Potts

O "modelo de Potts de Q-estados" trata de um sistema de rede com N spins interagentes Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=\{s_1,s_2,..s_i,...s_N\}} , onde um spin Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_i} pode assumir valores discretos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle q \in{\{0, 1, 2, ..., Q-2, Q, Q-1\}}} . Cada spin do sistema está limitado a interagir com outros spins em sua vizinhança e a energia da interação entre dois spins Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_i} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_j} é dada pelo potencial

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(s_i,s_j) = -J\delta{(s_i,s_j)} }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta{(s_i,s_j)}} é a função delta de Kronecker e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} é a constante de interação entre os spins. Dessa maneira, a interação entre dois spins vizinhos contabiliza um valor Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle -J} de energia ao sistema apenas se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_i = s_j} . A hamiltoniana do sistema é dada pela soma entre todas as interações entre spins vizinhos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} = -J\sum_{\langle i,j \rangle}{\delta{(s_i,s_j)}}}

Este modelo é tido como uma generalização natural do Modelo de Ising e para o caso Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q = 2} ambos modelos são equivalentes a menos de uma constante:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_{ising} = \mathcal{H}_{potts} + \sum_{\langle i,j \rangle}\frac{J}{2} = -\frac{J}{2}\sum_{\langle i,j \rangle}(2\delta(s_i,s_j) - 1) }

Nesse caso, a interação entre dois spins Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_i} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_j} assume a mesma dinâmica do modelo de Ising a contribuição para a energia do sistema será

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(s_i,s_j) = \begin{cases} -\frac{J}{2}, \quad \text{se } s_i = s_j \\ \frac{J}{2}, \quad \text{se } s_i \neq s_j \end{cases}}

Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos. A quantidade de spins no modelo é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = L\times L} com interações ferromagnéticas com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J = 1} , favorecendo vizinhanças de spins que compartilham o mesmo valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} para minimizar a energia do sistema.

Método de Monte Carlo

Algorítmo de Metrópolis

Para o método de Monte Carlo responsável por gerar configurações do sistema, utilizaremos o Algorítmo de Metropolis. O algoritmo funcionará escolhendo repetidamente um novo estado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} e aceitando ou rejeitando o estado de acordo com uma probabilidade de aceitação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mu \rightarrow \nu)} de transitar de um estado antigo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} para o novo estado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} . O algoritmo que iremos descrever utiliza a dinâmica de inversão única de spins, onde apenas um spin será invertido aleatoriamente para termos um novo estado a ser testado. É válido notar que a dinâmica de inversão única de spins não é o que caracteriza o método de Metropolis, pois ainda poderíamos ter esse método ao utilizarmos uma dinâmica com mais spins sendo invertidos simultaneamente.

Temos que a condição de balanceamento detalhado é dada por [1]:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(\mu \rightarrow \nu)}{A(\nu \rightarrow \mu)} = e^{-\frac{\Delta E}{k_BT}}, \qquad (3)}

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E = E_\nu - E_\mu} .

Vamos supor que tenhamos os estados Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} e que temos a relação de energias: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\mu < E_\nu} . Então, a maior das duas chances de aceitação é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\nu \rightarrow \mu)} , portanto iremos igualar essa probabilidade a 1. Para que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3)} seja respeitada, iremos definir o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mu \rightarrow \nu)} como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-\frac{\Delta E}{k_BT}}} . Temos, assim, o algoritmo de Metropolis:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mu \rightarrow \nu) = \begin{cases} e^{-\frac{\Delta E}{k_BT}}, \qquad \text{se } \Delta E > 0\\\\ 1, \qquad \qquad \text{caso contrario}. \end{cases}}

Dessa forma, sempre que tivermos um estado cuja energia seja menor do que a do estado atual, iremos aceitar a transição, mas se a energia for maior, teremos uma pequena probabilidade de trocarmos de estado.

  1. M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.