Linearização de sistemas de equações não lineares: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
(Criou página com 'Primeiro temos que um mapa linear é um mapa <math display="inline">V\rightarrow W</math> entre dois espaços vetoriais, isto é, um mapa que preserva as operações de adiç...')
 
Sem resumo de edição
Linha 1: Linha 1:
Primeiro temos que um mapa linear é um mapa <math display="inline">V\rightarrow W</math> entre dois espaços vetoriais, isto é, um mapa que preserva as operações de adição de vetores e multiplicação escalar:
  Primeiro temos que um mapa linear é um mapa <math display="inline">V\rightarrow W</math> entre dois espaços vetoriais, isto é, um mapa que preserva as operações de adição de vetores e multiplicação escalar:


<math display="block">f\left(\boldsymbol{u}+\boldsymbol{v}\right)=f\left(\boldsymbol{u}\right)+f\left(\boldsymbol{v}\right)\qquad f\left(c\boldsymbol{u}\right)=cf\left(\boldsymbol{u}\right)</math>
<math display="block">f\left(\boldsymbol{u}+\boldsymbol{v}\right)=f\left(\boldsymbol{u}\right)+f\left(\boldsymbol{v}\right)\qquad f\left(c\boldsymbol{u}\right)=cf\left(\boldsymbol{u}\right)</math>
Linha 25: Linha 25:




Os termo <math display="inline">g_{j}\left(t\right)</math> podem ser reescritos em termo das outras equações <math display="inline">x_{j}</math>, Por exemplo <math display="inline">g_{0}=g_{01}\left(t\right)x_{1}+\dots g_{0n}\left(t\right)x_{n}+b_{0}\left(t\right)</math>, então:
Os termos <math display="inline">g_{j}\left(t\right)</math> podem ser reescritos em termo das outras equações <math display="inline">x_{j}</math>, Por exemplo <math display="inline">g_{0}=g_{01}\left(t\right)x_{1}+\dots g_{0n}\left(t\right)x_{n}+b_{0}\left(t\right)</math>, então:


<math display="block">\begin{aligned}
<math display="block">\begin{align}
\left(\begin{array}{c}
\left(\begin{array}{c}
\dot{x_{0}}\\
\dot{x_{0}}\\
Linha 49: Linha 49:
\vdots\\
\vdots\\
b_{n}\left(t\right)
b_{n}\left(t\right)
\end{array}\right)\end{aligned}</math>Que ainda pode ser reescrito sem perda de generalidade como:
\end{array}\right)\end{align}</math>


<math display="block">\begin{aligned}
Que ainda pode ser reescrito sem perda de generalidade como:
 
<math display="block">\begin{align}
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+\boldsymbol{b}\\
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+\boldsymbol{b}\\
  & =A\boldsymbol{x}+\mathbb{I}\boldsymbol{b}\\
  & =A\boldsymbol{x}+\mathbb{I}\boldsymbol{b}\\
  & =A\boldsymbol{x}+B\boldsymbol{u}\end{aligned}</math>É comum encontrar na literatura <math display="inline">\boldsymbol{u}</math> sendo chamado de entrada. Podemos nos atentar que com a matriz <math display="inline">B</math> podemos escrever <math display="inline">\boldsymbol{u}</math> com elementos linearmente independentes. Tendo como exemplo o seguinte sistema:
  & =A\boldsymbol{x}+B\boldsymbol{u}\end{align}</math>É comum encontrar na literatura <math display="inline">\boldsymbol{u}</math> sendo chamado de entrada. Podemos nos atentar que com a matriz <math display="inline">B</math> podemos escrever <math display="inline">\boldsymbol{u}</math> com elementos linearmente independentes. Tendo como exemplo o seguinte sistema:


<math display="block">\begin{aligned}
<math display="block">\begin{align}
\dot{x} & =\cos\left(t\right)\left(x+1\right)+\sin\left(t\right)\left(y+1\right)+t^{2}\\
\dot{x} & =\cos\left(t\right)\left(x+1\right)+\sin\left(t\right)\left(y+1\right)+t^{2}\\
\dot{y} & =\cos\left(t\right)\left(x+1\right)-\sin\left(t\right)\left(y+1\right)+t\end{aligned}</math>Podemos reescrever <math display="inline">\dot{x}</math> por exemplo:
\dot{y} & =\cos\left(t\right)\left(x+1\right)-\sin\left(t\right)\left(y+1\right)+t\end{align}</math>Podemos reescrever <math display="inline">\dot{x}</math> por exemplo:


<math display="block">\begin{aligned}
<math display="block">\begin{align}
\dot{x} & =\left[\cos\left(t\right)\right]x+\left[\cos\left(t\right)+\sin\left(t\right)\left(y+1\right)+t^{2}\right]\\
\dot{x} & =\left[\cos\left(t\right)\right]x+\left[\cos\left(t\right)+\sin\left(t\right)\left(y+1\right)+t^{2}\right]\\
  & =a\left(t\right)x+g\left(t\right)\end{aligned}</math>
  & =a\left(t\right)x+g\left(t\right)\end{align}</math>




Podemos ver que precisamos conhecer <math display="inline">y\left(t\right)</math> para conhecermos completamente o comportamento de <math display="inline">x\left(t\right)</math>, o que é uma característica de sistemas. Reescrevendo o sistema na forma diferencial tradicional:<math display="block">\begin{aligned}
Podemos ver que precisamos conhecer <math display="inline">y\left(t\right)</math> para conhecermos completamente o comportamento de <math display="inline">x\left(t\right)</math>, o que é uma característica de sistemas. Reescrevendo o sistema na forma diferencial tradicional:<math display="block">\begin{align}
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+\boldsymbol{b}\\
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+\boldsymbol{b}\\
\left(\begin{array}{c}
\left(\begin{array}{c}
Linha 79: Linha 81:
\cos\left(t\right)+\sin\left(t\right)+t^{2}\\
\cos\left(t\right)+\sin\left(t\right)+t^{2}\\
\cos\left(t\right)-\sin\left(t\right)+t
\cos\left(t\right)-\sin\left(t\right)+t
\end{array}\right)\end{aligned}</math>  
\end{array}\right)\end{align}</math>  




Linha 85: Linha 87:
\cos\left(t\right)+\sin\left(t\right)+t^{2}, & \cos\left(t\right)-\sin\left(t\right)+t\end{array}\right)^{T}</math>. Mas ainda podemos reescrever como:
\cos\left(t\right)+\sin\left(t\right)+t^{2}, & \cos\left(t\right)-\sin\left(t\right)+t\end{array}\right)^{T}</math>. Mas ainda podemos reescrever como:


<math display="block">\begin{aligned}
<math display="block">\begin{align}
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+B\boldsymbol{u}\\
\dot{\boldsymbol{x}} & =A\boldsymbol{x}+B\boldsymbol{u}\\
\left(\begin{array}{c}
\left(\begin{array}{c}
Linha 104: Linha 106:
t^{2}\\
t^{2}\\
t
t
\end{array}\right)\end{aligned}</math>
\end{array}\right)\end{align}</math>


Onde temos <math display="inline">\boldsymbol{u}=\left(\begin{array}{cc}
Onde temos <math display="inline">\boldsymbol{u}=\left(\begin{array}{cc}
\cos\left(t\right), & \sin\left(t\right)\end{array},t^{2},t\right)^{T}</math>. Agora, considerando que as matrizes <math display="inline">A</math> e <math display="inline">B</math> sejam independentes do tempo, temos:
\cos\left(t\right), & \sin\left(t\right)\end{array},t^{2},t\right)^{T}</math>. Agora, considerando que as matrizes <math display="inline">A</math> e <math display="inline">B</math> sejam independentes do tempo, temos:


<math display="block">\begin{aligned}
<math display="block">\begin{align}
\left(\begin{array}{c}
\left(\begin{array}{c}
\dot{x_{1}}\\
\dot{x_{1}}\\
Linha 131: Linha 133:
u_{m}
u_{m}
\end{array}\right)\\
\end{array}\right)\\
\dot{\boldsymbol{x}}\left(t\right) & =A\boldsymbol{x}\left(t\right)+B\boldsymbol{u}\left(t\right)\end{aligned}</math>Então <math display="inline">\dot{\boldsymbol{x}}\left(t\right)=f\left(\boldsymbol{x}\left(t\right),\boldsymbol{u}\left(t\right)\right)</math>. Omitindo a informação da dependência no tempo <math display="inline">\left(t\right)</math>, temos o seguinte vetor:
\dot{\boldsymbol{x}}\left(t\right) & =A\boldsymbol{x}\left(t\right)+B\boldsymbol{u}\left(t\right)\end{align}</math>Então <math display="inline">\dot{\boldsymbol{x}}\left(t\right)=f\left(\boldsymbol{x}\left(t\right),\boldsymbol{u}\left(t\right)\right)</math>. Omitindo a informação da dependência no tempo <math display="inline">\left(t\right)</math>, temos o seguinte vetor:


<math display="block">\boldsymbol{f}\left(\boldsymbol{x},\boldsymbol{u}\right)=\left(\begin{array}{c}
<math display="block">\boldsymbol{f}\left(\boldsymbol{x},\boldsymbol{u}\right)=\left(\begin{array}{c}

Edição das 16h03min de 12 de abril de 2021

  Primeiro temos que um mapa linear é um mapa entre dois espaços vetoriais, isto é, um mapa que preserva as operações de adição de vetores e multiplicação escalar:


Onde são vetores e é escalar. Uma equação linear é então uma equação da forma:

Onde as variáveis e os coeficientes são e respectivamente. De maneira análoga, uma equação diferencial linear tem a seguinte forma geral:

Lembrando que os termos e podem ser não-lineares, e também que equações diferenciais lineares possuem o princípio da superposição, isto é, a superposição de duas ou mais soluções para uma equação diferencial linear homogênea, também é uma solução. Uma equação diferencial de primeira ordem () pode ser escrita então como:

Para facilitar, vamos denotar sem perda de generalidade , e :

Se , então temos apenas , que é classificada como equação homogênea. Podemos perceber que ainda pode aparecer explicitamente em , porém se isto não acontecer, ou seja, for constante, temos então uma equação autônoma . Se temos então um conjunto de equações diferenciais de primeira ordem, podemos escrever na forma vetorial:


Os termos podem ser reescritos em termo das outras equações , Por exemplo , então:

Que ainda pode ser reescrito sem perda de generalidade como:

É comum encontrar na literatura sendo chamado de entrada. Podemos nos atentar que com a matriz podemos escrever com elementos linearmente independentes. Tendo como exemplo o seguinte sistema:

Podemos reescrever por exemplo:


Podemos ver que precisamos conhecer para conhecermos completamente o comportamento de , o que é uma característica de sistemas. Reescrevendo o sistema na forma diferencial tradicional:


Ou seja, temos . Mas ainda podemos reescrever como:

Onde temos . Agora, considerando que as matrizes e sejam independentes do tempo, temos:

Então . Omitindo a informação da dependência no tempo , temos o seguinte vetor:

Onde e . O ponto de equilíbrio ocorre quando para uma entrada constante temos :

  • Se a matriz é inservível, temos um único ponto de equilíbrio.
  • Se a matriz é singular, ou seja, não é inservível (seu determinante é nulo, e como o determinante é o produto dos autovalores[1], consequentemente então um autovalor ao menos é nulo), então dependemos do posto matricial (quantidade de linhas ou colunas independentes) do produto :
    • há um infinito número de pontos de equilíbrio;
      • Nesse caso podemos obter todas soluções a partir de uma solução particular, fazendo (lembrando que o kernel é um sub-espaço formado por vetores que satisfazem [2]).
    • não há pontos de equilíbrio.

Para sistemas lineares, a estabilidade do ponto de equilíbrio não depende do ponto em si. A estabilidade do sistema é completamente determinada pela posição dos autovalores da matriz A.

Considerando então um sistema não linear:

Novamente o ponto de equilíbrio ocorre quando para uma entrada constante quando temos . Mas agora a estabilidade não é uma propriedade global do sistema, mas local. Então a análise deve ser feita em cada ponto de equilíbrio. Vamos expandir então a função na vizinhaça do do ponto de equilíbrio . Para uma variável, temos a seguinte expansão em série de Taylor em torno de :

Para o primeiro grau, uma função para duas variáveis próxima ao ponto pode ser aproximada por[3]:

Mas escrevendo então e :

E tendo os vetores e  :

Onde:

Generalizando para nosso caso temos então:

Uma vez que agora ambos e são vetores . E como , fazendo o deslocamento e , temos:

Onde:

Onde a matriz é a matriz jacobiana que representa a diferenciação de em cada ponto onde é diferenciável.

Principais materiais utilizados

  1. Analysis of Ordinary Differential Equations (J. M. Cushing, Universidade do Arizona)
  2. Linearization of Nonlinear Systems (Roberto Zanasi, Universidade de Módena e Reggio Emília)

Citações

  1. Facts About Eigenvalues (David Butler, University of Adelaide)
  2. Lecture 13: Image and Kernel (Oliver Knill, Harvard University)
  3. Taylor Polynomials of Functions of Two Variables (Paul Seeburger, LibreTexts)