Equação de Cahn-Hilliard: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 35: Linha 35:
</math>
</math>


Utilizando essa equação em conjunto com a equação do fluxo chegamos em:
:<math>
J = -D\nabla\frac{\delta\Upsilon(c)}{\delta c}
</math>
E, para alcançarmos a equação de Cahn-Hilliard, podemos simplesmente assumir que o sistema conserva as massas, ou seja:
:<math>
\frac{\partial c(x,t)}{\partial t} = -\nabla \cdot J
</math>


Por definição, verificou-se que a concentração não poderia ser a razão da difusão, portanto outra força estaria presente. E, nesse caso, encontrou-se que a principal força responsável pela difusão negativa é o potencial químico. Portanto, outra equação pode ser derivada para generalizar a primeira lei de Fick:
Por definição, verificou-se que a concentração não poderia ser a razão da difusão, portanto outra força estaria presente. E, nesse caso, encontrou-se que a principal força responsável pela difusão negativa é o potencial químico. Portanto, outra equação pode ser derivada para generalizar a primeira lei de Fick:
Linha 50: Linha 42:
</math>
</math>


Onde <math>M</math>  é a mobilidade das partículas (análoga à D) e <math>\mu</math> é o potencial químico.
Com essa nova equação podemos agora também deduzir uma nova equação para a segunda lei de Fick:
:<math>
\frac{\partial c}{\partial t} = M {\nabla}^2 \mu
</math>
-------
-------
:<math>
:<math>

Edição das 18h23min de 29 de março de 2021

Grupo: Arthur Dornelles, Bruno Zanette, Gabriel De David, Guilherme Hoss

O objetivo deste trabalho é resolver computacionalmente a equação de Cahn-Hilliard, que descreve o processo de decomposição spinodal de uma mistura binária, utilizando o método FTCS (Forward Time Centered Space).

Decomposição Espinodal

Decomposição espinodal é o nome dado ao processo no qual uma pequena perturbação de um sistema faz com que, uma fase homogênea termodinamicamente instável, diminua sua energia e separe-se espontaneamente em duas outras fases coexistentes, esse é um processo que ocorre sem nucleação, ou seja, é instantâneo. Ela é observada, por exemplo, em misturas de metais ou polímeros e pode ser modelada pela equação de Cahn-Hilliard.

A Equação de Cahn-Hilliard

A equação de Cahn-Hilliard descreve o processo de decomposição espinodal de uma mistura binária. Em outras palavras, é uma equação que descreve o processo de separação de fase entre dois componentes de um fluido binário que se separam de maneira espontânea.

Consideraremos - de início - uma mistura binária de dois componentes A e B descritas pelas concentrações dos fluidos e , respectivamente.

Além disso, podemos considerar que - para uma mistura binária - e portanto podemos simplificar para apenas uma concentração :

Tendo isso em vista, podemos agora utilizar a primeira lei de Fick da difusão:

juntamente da equação da continuidade:

Onde é o coeficiente de difusão e é o fluxo de difusão. Em seguida, ao combinarmos ambas as equações anteriores o resultado gera a segunda lei de Fick da difusão:


Por definição, verificou-se que a concentração não poderia ser a razão da difusão, portanto outra força estaria presente. E, nesse caso, encontrou-se que a principal força responsável pela difusão negativa é o potencial químico. Portanto, outra equação pode ser derivada para generalizar a primeira lei de Fick:

Onde é a mobilidade das partículas (análoga à D) e é o potencial químico. Com essa nova equação podemos agora também deduzir uma nova equação para a segunda lei de Fick:



Nessa equação, é chamada de densidade de energia livre devido à contribuições de ambas fases homogêneas; é a densidade de energia livre devido ao gradiente de concentração na interface (ou energia da interface).

A função tem o formato de um poço de potencial duplo, que pode ser representado pela seguinte equação:

Método FTCS (Forward Time Centered Space)

O FTCS é um método numérico utilizado para resolver equações diferenciais parciais, tais como a difusão do calor e do transporte de massa, traduzindo, significa "Progressivo no tempo, avançado no espaço". Esse método pode ser utilizado em sua forma implícita ou explícita que estão descritas abaixo.

FTCS Explicito

Para difusão:

FTCS Implicito (BTCS)


Para difusão:


Resolução do Cahn-Hilliard Equation para FTCS explicito para x somente:


Condição de Estabilidade

Referências