Difusão ambipolar em plasmas: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 31: Linha 31:


<math> \frac{\partial^2 n}{\partial x^2}= \frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}</math>
<math> \frac{\partial^2 n}{\partial x^2}= \frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}</math>


<math> \frac{n(x,t + dt) - n(x,t)}{dt} = -D_a\frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}</math>
<math> \frac{n(x,t + dt) - n(x,t)}{dt} = -D_a\frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}</math>

Edição das 11h19min de 29 de março de 2021

Equação da difusão ambipolar

Diferentemente de um gás de partículas neutras, um plasma (elétrons e íons), são menos livres ao se moverem por causa da atração coulombiana. Em um caso em que um plasma se movimenta elvolto em um gás neutro, os coeficientes de difusão dos elétrons e dos íons são tipicamente dados por

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_e = \frac{k_bT_e}{m_e\nu_e} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_i = \frac{h_bT_i}{m_i\nu_i} }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_e} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_e} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_i} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu_e} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu_i} , são as temperaturas, massas e frequências de colisão dos elétrons e íons com os isótopos dos átomos neutros. Devido à massa do elétron ser muito menor que a massa de um íon, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_e} é maior que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_i} , então quando um plasma começa a se espalhar, incialmente os elétrons se espalham mais rapidamente que os íons e isso gera um campo elétrico que freia os elétron e acelera os íons.

(botar uma figura aqui)

O fluxo de elétron e íons pode ser escrito como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec J_e = -\mu_en_e(\vec r, t)\vec E(\vec r,t) - D_e\vec{\nabla}n_e(\vec r,t) }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec J_i = \mu_in_i(\vec r, t)\vec E(\vec r,t) - D_i\vec{\nabla}n_i(\vec r,t) }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_e} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_i} são as razões entre as velocidades médias dos elétron e dos íons e o campo elétrico.


O Método

Para resolver a Difusão ambipolar em plasmas em 1D utilizamos o método FTCS(Forward Time Central Space).  


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial n}{\partial t} = -D_a \frac{\partial^2 n}{\partial x^2}}


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial n}{\partial t} = \frac{n(x,t + dt) - n(x,t)}{dt}}


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 n}{\partial x^2}= \frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}}


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n(x,t + dt) - n(x,t)}{dt} = -D_a\frac{n(x + dx,t) - 2n(x,t) + n(x - dx,t)}{dx^2}}

Resultados e Discussão

Programas Utilizados

Referências