Modelo de Turing: mudanças entre as edições
Sem resumo de edição |
|||
Linha 21: | Linha 21: | ||
==Estabilidade e Instabilidade no Modelo de Turing== | ==Estabilidade e Instabilidade no Modelo de Turing== | ||
== Pontos de Equilíbrio == | === Pontos de Equilíbrio === | ||
Vimos que o modelo de Turing depende de parâmetros <math>a,b,c,d</math>, de constantes <math>h</math> e <math>k</math> e dos coeficientes de difusão. | Vimos que o modelo de Turing depende de parâmetros <math>a,b,c,d</math>, de constantes <math>h</math> e <math>k</math> e dos coeficientes de difusão. | ||
Linha 49: | Linha 49: | ||
Do mesmo modo, <math>u_1=u_2</math>. Portanto, o ponto de equilíbrio é único nessas circunstâncias. | Do mesmo modo, <math>u_1=u_2</math>. Portanto, o ponto de equilíbrio é único nessas circunstâncias. | ||
== Estabilidade de Sistemas Reativos-Difusivos == | === Estabilidade de Sistemas Reativos-Difusivos === | ||
Para estudarmos a estabilidade dos sistemas reativos-difusivos precisamos encontrar os autovalores da matriz<ref name=Sayama260>H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 287. Open SUNY Textbooks, Geneseo, NY, 2015.</ref> | Para estudarmos a estabilidade dos sistemas reativos-difusivos precisamos encontrar os autovalores da matriz<ref name=Sayama260>H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 287. Open SUNY Textbooks, Geneseo, NY, 2015.</ref> | ||
Edição das 14h17min de 22 de novembro de 2020
EM CONSTRUÇÃO
Equação de Turing
Simulações computacionais que envolvem equações diferenciais parciais (EDP's) são usualmente modeladas através da discretização das variáveis espaciais e temporais. Algumas dessas equações descrevem comportamentos difusivos no sistema, sendo chamadas de equações de difusão. Tais equações envolvem variáveis de estado que apresentam variações temporal e espacial e coeficientes de difusão no sistema, além de outros parâmetros que influenciam na evolução dos estados. Dentro desse ramo de equações, encontra-se o Modelo de Turing, desenvolvido por Alan Turing, que utiliza como base a concentração de espécies em um sistema, avaliando sua reação, difusão e variação espacial e temporal. São muitas as aplicações do modelo, principalmente em ramos como biologia e química, envolvendo problemas com formação de padrões[1]. A seguir, descrevemos sua formulação matemática.
Sejam e as concentrações das espécies que serão analisadas. Sejam e parâmetros e e constantes. Os coeficientes de difusão são e , cada um associado a uma das concentrações[2]. O Modelo de Turing é dado pelas EDP's
Note que certa parte de cada equação depende apenas dos parâmetros e das concentrações. Podemos, portanto, utilizar funções de variáveis e para descrever o sistema[3], de modo que
Estabilidade e Instabilidade no Modelo de Turing
Pontos de Equilíbrio
Vimos que o modelo de Turing depende de parâmetros , de constantes e e dos coeficientes de difusão.
Afirmação: Se , temos ( como o único ponto de equilíbrio.
Demonstração: Mostraremos que é ponto de equilíbrio. De fato, ao aplicarmos esse ponto na equação do modelo de Turing, temos
para mostrar que é único, suponha que existem dois pontos de equilíbrio, a saber, e . Vemos que, como as equações diferenciais em cada ponto fixo são iguais a zero, temos
Consequentemente, devemos ter
.
Do mesmo modo, . Portanto, o ponto de equilíbrio é único nessas circunstâncias.
Estabilidade de Sistemas Reativos-Difusivos
Para estudarmos a estabilidade dos sistemas reativos-difusivos precisamos encontrar os autovalores da matriz[2]
Onde é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações.
Implementação
Para resolver numericamente as equações de Turing iremos utilizar o método FTCS (Forward Time Central Space). O método FTCS é o mais simples e consiste em discretizar a derivada em de forma não simetrizada. Obtemos as seguintes discretizações para uma função genérica
Onde é o vetor posição, que neste trabalho utilizamos apenas duas dimensões, .
Podemos discretizar as equações de Turing diretamente com o método FTCS. Talvez o único problema seja o laplaciano, porém basta escrever da forma
Assim podemos utilizar a discretização simetrizada e obter
Ao tomarmos , que faremos aqui, podemos simplificar a discretização do laplaciano para
Então obtemos que as equações de Turing discretizadas pelo método FTCS, em notação discreta, são dadas por
Onde e são os índices espaciais e é o índice temporal.
Utilizamos uma rede quadrada de tamanho com condições de contorno periódicas. O sistema inicia próximo do equilibrio e então é aplicado um pequeno ruído para começar a difusão. O ruído é muito importante, sem ele o sistema ficaria sempre no equilíbrio. O ruído também deve ser pequeno suficiente para quebrar o estado inicial, mas não grande suficiente para causar instabilidades numéricas na simulação. O ruído utilizado aqui consiste em números aleatórios no intervalo . Tomamos .
Resultados
Programas Utilizados
Referências
- ↑ https://en.wikipedia.org/wiki/Turing_pattern
- ↑ 2,0 2,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 260. Open SUNY Textbooks, Geneseo, NY, 2015. Erro de citação: Etiqueta inválida
<ref>
; Nome "Sayama260" definido várias vezes com conteúdo diferente - ↑ J. Jost, "Partial Differential Equations", 3ed, p.140. Springer Science+Business Media, New York, 2013.