Grupo - Modelo de Potts: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 10: | Linha 10: | ||
onde <math>J</math> é a constante de acoplamento que determina a intensidade da interação, <math>\delta(s_i,s_j)</math> é a função delta de Kronecker que retorna <math>1</math> se <math>s_i=s_j</math> e retorna <math>0</math> para todos os outros casos, e o somatório considera somente os pares <math>(i,j)</math> de spins vizinhos. | onde <math>J</math> é a constante de acoplamento que determina a intensidade da interação, <math>\delta(s_i,s_j)</math> é a função delta de Kronecker que retorna <math>1</math> se <math>s_i=s_j</math> e retorna <math>0</math> para todos os outros casos, e o somatório considera somente os pares <math>(i,j)</math> de spins vizinhos. | ||
No caso ferromagnético <math>J>0</math> o nivel fundamental de energia possui uma degenerescência igual à <math>q</math> correspondendo aos valores possíveis para todos os spins alinhados. | |||
É Importante remarcar que para <math>q=2</math> o modelo de Potts é equivalente ao modelo de Ising com constante de acoplamento <math>\frac{J}{2}</math> a menos de uma constante aditiva <math>-\sum_{(i,j)}\frac{J}{2}</math> no Hamiltoniano. | |||
==Simulação Monte Carlo== | ==Simulação Monte Carlo== | ||
A abordagem utilizada para simular por Monte Carlo um sistema seguindo o modelo de Potts com <math>q</math> pequeno é naturalmente similar àquela utilizada para o modelo de Ising, seguindo o algoritmo de Metropolis. Entretanto para valores mais elevados de <math>q</math> esse algoritmo se torna ineficiente e o sistema demora um tempo muito longo para entrar em equilíbrio térmico. | |||
==Referências== | ==Referências== | ||
Edição das 19h04min de 24 de janeiro de 2018
Originalmente descrito por Renfrey Potts em 1951 na sua tese de doutorado, esse modelo é uma generalização do modelo de Ising para a interação entre spins em uma rede cristalina.
Descrição do modelo
No modelo de Potts à estados são considerados spins dispostos em uma rede, geralmente bidimesnsional retangular, cada spin podendo estar em um de estados possíveis.
O Hamiltoniano desse sistema é
onde é a constante de acoplamento que determina a intensidade da interação, é a função delta de Kronecker que retorna se e retorna para todos os outros casos, e o somatório considera somente os pares de spins vizinhos.
No caso ferromagnético o nivel fundamental de energia possui uma degenerescência igual à correspondendo aos valores possíveis para todos os spins alinhados.
É Importante remarcar que para o modelo de Potts é equivalente ao modelo de Ising com constante de acoplamento a menos de uma constante aditiva no Hamiltoniano.
Simulação Monte Carlo
A abordagem utilizada para simular por Monte Carlo um sistema seguindo o modelo de Potts com pequeno é naturalmente similar àquela utilizada para o modelo de Ising, seguindo o algoritmo de Metropolis. Entretanto para valores mais elevados de esse algoritmo se torna ineficiente e o sistema demora um tempo muito longo para entrar em equilíbrio térmico.
Referências
Potts, Renfrey B. (1952). "Some Generalized Order-Disorder Transformations". Mathematical Proceedings.
M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.