Grupo - Modelo Sznajd: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 35: Linha 35:


== Generalização ==
== Generalização ==
Para a generalização desse método para a rede quadrada <math>L</math>x<math>L</math> onde cada spin pode estar para cima ou para baixo e utiliza-se condições periódicas de contorno. A regra <math>II_{a}</math>
Para a generalização desse método para a rede quadrada <math>L</math>x<math>L</math> onde cada spin pode estar para cima ou para baixo e utiliza-se condições periódicas de contorno. A regra <math>II_{a}</math><ref>D. Stauffer,A.O. Sousa,M. De Oliveira, Int. J. Mod. Phys. C 11 1239</ref>
[[Arquivo:2.jpg]]


== Aplicações ==
== Aplicações ==
Como mencionado anteriormente, o modelo de Sznajd pode ser utilizado em política, marketing e finanças.
Como mencionado anteriormente, o modelo de Sznajd pode ser utilizado em política, marketing e finanças.


<ref>D. Stauffer,A.O. Sousa,M. De Oliveira, Int. J. Mod. Phys. C 11 1239</ref>
 
==Bibliografia==
==Bibliografia==
<references/>
<references/>

Edição das 17h51min de 24 de janeiro de 2018

Introdução

O Modelo de Sznajd ou United we stand, divided we fall (USDF) é um modelo recente, proposto em 2000 para entender a dinâmica de opiniões através da física estatística. No ponto de vista de um físico, o comportamento de indivíduos a as interações entre eles constituem um nível microscópico de um sistema social. O modelo introduz o fenômeno chamado validação social:

Validação Social: Se duas pessoas compartilham da mesma opinião, os seus vizinhos começarão a concordar com elas.

Discordância Destrutiva: Se as pessoas discordam, os vizinhos começarão a argumentar com elas.

O método e Formulação Matemática

Opinião social é vinda de opiniões individuais, representadas neste modelo por spins de Ising de forma "yes" e "no". A dinâmica segue a relação da validação social:

  1. A cada timestep um par de sping são escolhidos para tentar mudar os seus vizinhos mais próximos
  2. Se , então e (validação social)
  3. Se , então e

No modelo, dois tipos de estados estacionários são alcançáveis: consenso completo(ferromagnético) e impasse(antiferromagnético). A principal diferença para o Ising é que a informação flui para fora. O modelo de Sznajd ou USDF tem sido modificado e utilizado em marketing, política e finanças.

Modificações

Fala-se que o estado antes mencionado, o antiferromagnetismo, pode ser considerado não realístico para representar o comportamento de indivíduos em uma sociedade. Para tentar evitar este caso, propõe-se o seguinte:

  1. A cada timestep um par de sping são escolhidos para tentar mudar os seus vizinhos mais próximos igual anteriomente
  2. Se , então e (validação social)
  3. Se , então e

Estas regras ficaram conhecidas como algo do tipo: "Se você não sabe o que fazer, ou faz nada ou faz qualquer coisa." É um tanto quanto óbvio que o modelo unidimensional não representa bem um sistema social e que modelos bidimensionais são bem mais realistas. Algo interessante mencionar é a atualização simultânea para sistemas de duas dimensões: uma atualização simultânea leva a uma muito maior dificuldade de atingir o estado de consenso total. Isso foi mostrado por Stauffer[1] e a rezão para isso é que alguns recebem simultaneamente distintas informações de diferentes vizinhos, o que leva a não aceitar a opinião.

Regras para rede quadrada :

  1. Se conjunto 2x2 de 4 vizinhos não tiverem todos os seus spins paralelos, deixam os seus oito vizinhos sem modificações
  2. Um par de vizinhos convence seus seis vizinhos a seguirem a sua orientação se o par de spins for paralelo.

A regra de atualização para duas dimensões pode ser obtida pela regra em uma dimensão: A regra e 1D é aplicada para cada uma das 4 cadeias de spins, como mostra a próxima figura: 1.jpg

Isto foi mostrado por Gallam[2]

Generalização

Para a generalização desse método para a rede quadrada x onde cada spin pode estar para cima ou para baixo e utiliza-se condições periódicas de contorno. A regra [3] 2.jpg

Aplicações

Como mencionado anteriormente, o modelo de Sznajd pode ser utilizado em política, marketing e finanças.


Bibliografia

  1. D. Stauffer D, J Math Sociol 28 25 (2004)
  2. S. Galam, J. Stat. Phys. 61, 943 (1990)
  3. D. Stauffer,A.O. Sousa,M. De Oliveira, Int. J. Mod. Phys. C 11 1239