Grupo - Lennard Jones: mudanças entre as edições
Linha 61: | Linha 61: | ||
=== Estimadores no Equilíbrio === | === Estimadores no Equilíbrio === | ||
Em todos os exemplos tratados aqui, será usado o ensemble NVT (com o número de partículas, volume e temperatura constantes). Dado isso, os sistemas são caracterizados com um densidade e uma temperatura | Em todos os exemplos tratados aqui, será usado o ensemble NVT (com o número de partículas, volume e temperatura constantes). Dado isso, os sistemas são caracterizados com um densidade e uma temperatura. Com tais sistema no equilíbrio, são estimadas a energia total (<math>U</math>) e a pressão (<math>P</math>), onde | ||
<math>P = \frac{\rho}{\beta} + \frac{2}{3V}\sum_i \sum_{j>i}\mathbf{f(\mathbf{r_{ij}})} \cdot \mathbf{r_{ij}}</math> | <math>P = \frac{\rho}{\beta} + \frac{2}{3V}\sum_i \sum_{j>i}\mathbf{f(\mathbf{r_{ij}})} \cdot \mathbf{r_{ij}}</math> |
Edição das 22h03min de 13 de janeiro de 2018
O potencial devido a interação entre duas partículas separadas por uma distância pode ser modelado pelo potencial de Lennard Jones:
Posto em unidades reduzidas ( e ), o potencial reduz-se a:
Trabalha-se, por conveniência, com o seguintes sistema de unidades básicas:
Grandeza | Comprimento | Tempo | Massa | Temperatura | Energia | Pressão | Densidade |
---|---|---|---|---|---|---|---|
Unidade |
onde é a massa da partícula e é a constante de Boltzmann. .
Método Monte Carlo
Denomina-se método de Monte Carlo métodos estatísticos que se baseiam em amostragem aleatória massiva para cálculo numérico.
Amostragem simples
Pode-se querer calcular uma integral numericamente utilizando Monte Carlo. Uma forma de fazer isso parte de que uma integral pode ser reescrita como
Dessa forma, utiliza-se amostragem aleatória massiva para estimar , que é a média da função no intervalo de interesse.
Amostragem por importância
Um problema da amostragem simples é que ela utiliza uma distribuição uniforme, que pode, pra uma função que decaia rapidamente a zero, demorar muito a estimar corretamente o valor médio da função. Porém, podemos utilizar uma distribuição que tenha um formato semelhante à função que queremos integrar, reescrevendo a integral
Algoritmo de Metropolis
Dado uma amostra com partículas, a abordagem introduzida por Metropolis segue o seguinte esquema:
(1) Selecionar uma partícula aleatóriamente, e calcular sua energia ;
(2) Dado o deslocamento , calcular ;
(3) Aceitar o movimento com probabilidade
Estimadores no Equilíbrio
Em todos os exemplos tratados aqui, será usado o ensemble NVT (com o número de partículas, volume e temperatura constantes). Dado isso, os sistemas são caracterizados com um densidade e uma temperatura. Com tais sistema no equilíbrio, são estimadas a energia total () e a pressão (), onde
Além disso, é interrsante a analise da capacidade térmica ():
Detalhes Técnicos
Condições de Contorno
Truncagem nas interações
Translação
Diagramas de fase
Referências
- Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics. Volume 1. Wiley, 1991.
- Numerical Resolution Of The Schrödinger Equation. Jorgensen L., Lopes Cardozo D., Thivierge E. http://web.pa.msu.edu/people/duxbury/courses/phy480/SchrodingerDynamics.pdf
- Crank, J.; Nicolson, P. (1947). "A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type". Proc. Camb. Phil. Soc. 43 (1): 50–67. doi:10.1007/BF02127704.
- Sherer, Philipp O.J., Computational Physics simulation of Classical and Quantum Systems. Springer, 2010.
- Born M., Nobel lecture: The statistical interpretation of quantum mechanics. 11 de Dezembro de 1954. https://www.nobelprize.org/nobel_prizes/physics/laureates/1954/born-lecture.pdf