|
|
Linha 440: |
Linha 440: |
| Com isso, condições iniciais e de contorno bem estabelecidas, já é possível aplicar o método, dado que todas essas matrizes dependem somente dos parâmetros do sistema. | | Com isso, condições iniciais e de contorno bem estabelecidas, já é possível aplicar o método, dado que todas essas matrizes dependem somente dos parâmetros do sistema. |
|
| |
|
| =Estabilidade Crank-Nicholson= | | =Estabilidade Crank-Nicolson= |
| Utilizará-se o método de Von-Neumann para analisar a estabilidade do método para a equação de Dirac unidimensional, para supõe-se que a função $\mathbf{\Phi^{n} _j}$ pode ser dada pela série de fourier:
| | Utilizar-se-á o método de von Neumann para analisar a estabilidade do método de Crank-Nicolson para a equação de Dirac unidimensional. Para tanto, supõe-se que a função <math>\mathbf{\Phi^{n} _j}</math> pode ser dada pela série de Fourier |
|
| |
|
| <center> | | <center> |
Linha 449: |
Linha 449: |
| </center> | | </center> |
|
| |
|
| Devido à indepêndencia linear de cada termo do somatório, ao substituir na equação do método haverá uma equação para cada ente do somatório. Se o módulo da razão $\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} \le 1$ então é pode-se dizer que o método estável, já que dessa forma garante-se uma não divergência. | | Devido à independência linear de cada termo do somatório, ao substituir na equação do método haverá uma equação para cada ente do somatório. Se <math>\left|\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}}\right| \le 1</math>, então pode-se dizer que o método estável, já que dessa forma garante-se uma não divergência. |
|
| |
|
| Aplica-se um termo geral da série de índice $k$ no método CN para a equação de dirac 1D. | | Aplica-se um termo geral da série de índice <math>k</math> no método CN para a equação de Dirac 1D: |
|
| |
|
| <center> | | <center> |
| <math> | | <math> |
| [I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2]\mathbf{A}^{n+1}e^{ikqjh} + \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n+1}[e^{ikq(j+1)h} - e^{ikq(j-1)h}] =</math> | | \left[I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2\right]\mathbf{A}^{n+1}e^{ikqjh} + \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n+1}\left[e^{ikq(j+1)h} - e^{ikq(j-1)h}\right] = |
| <math>
| | \left[I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2\right]\mathbf{A}^{n}e^{ikqjh} - \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n}\left[e^{ikq(j+1)h} - e^{ikq(j-1)h}\right] |
| [I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2]\mathbf{A}^{n}e^{ikqjh} - \frac{\Delta t}{4h}\sigma_1\mathbf{A}^{n}[e^{ikq(j+1)h} - e^{ikq(j-1)h}] | |
| </math> | | </math> |
| </center> | | </center> |
Linha 465: |
Linha 464: |
| <center> | | <center> |
| <math> | | <math> |
| [I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1(e^{ikqh} - e^{-ikqh}) ]\mathbf{A}^{n+1}=</math> | | \left[I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1\left(e^{ikqh} - e^{-ikqh}\right)\right]\mathbf{A}^{n+1}= |
| <math>
| | \left[I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1\left(e^{ikqh} - e^{-ikqh}\right)\right]\mathbf{A}^{n} |
| [I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1(e^{ikqh} - e^{-ikqh})]\mathbf{A}^{n} | |
| </math>
| |
| | |
| <math>
| |
| [I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2i}) ]\mathbf{A}^{n+1}=
| |
| </math>
| |
| | |
| <math>
| |
| [I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2i})]\mathbf{A}^{n}
| |
| </math> | | </math> |
|
| |
|
| <math> | | <math> |
| [I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2}) ]\mathbf{A}^{n+1}= | | \left[I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 + \frac{\Delta t}{4h}\sigma_1\left(\frac{\sin (kqh)}{2i}\right)\right]\mathbf{A}^{n+1}= |
| | \left[I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 - \frac{\Delta t}{4h}\sigma_1\left(\frac{\sin (kqh)}{2i}\right)\right]\mathbf{A}^{n} |
| </math> | | </math> |
|
| |
|
| <math> | | <math> |
| [I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 + \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2})]\mathbf{A}^{n} | | \left[I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1\left(\frac{\sin (kqh)}{2}\right)\right]\mathbf{A}^{n+1}= |
| | \left[I_2 - \frac{i}{2}\Delta t\sigma_3 - \frac{i}{2}\Delta t V^{n} _jI_2 + \frac{i\Delta t}{4h}\sigma_1\left(\frac{\sin (kqh)}{2}\right)\right]\mathbf{A}^{n} |
| </math> | | </math> |
|
| |
|
| </center> | | </center> |
|
| |
|
| Nota-se que os termos que multiplicam o fator <math>\mathbf{A}</math> são o conjugado um do outro, define-se <math>z = I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1(\frac{\sin (kqh)}{2})</math>, dessa maneira: | | Nota-se que os termos que multiplicam o fator <math>\mathbf{A}</math> são o conjugado um do outro. Define-se <math>z = I_2 + \frac{i}{2}\Delta t\sigma_3 + \frac{i}{2}\Delta t V^{n+1} _j I_2 - \frac{i\Delta t}{4h}\sigma_1\left(\frac{\sin (kqh)}{2}\right)</math>; dessa maneira: |
|
| |
|
| <center> | | <center> |
Linha 494: |
Linha 486: |
| \frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} = \frac{z^*}{z} | | \frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}} = \frac{z^*}{z} |
| </math> | | </math> |
| | </center> |
|
| |
|
| | <center> |
| <math> | | <math> |
| |\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}}| = |\frac{z^*}{z}| = \frac{|z^*|}{|z|} = 1 | | \left|\frac{\mathbf{A}^{n+1}}{\mathbf{A}^{n}}\right| = \left|\frac{z^*}{z}\right| = \frac{|z^*|}{|z|} = 1 |
| </math> | | </math>, |
| | |
| </center> | | </center> |
|
| |
|
| Onde <math>z</math> é sempre diferente de zero, dado que a parte real é dada por uma matriz identidade constante.
| | onde <math>z</math> é sempre diferente de zero, visto que a parte real é dada por uma matriz identidade constante. |
| Mostra-se, portanto, que a razão entre os coeficientes da série de fourier nunca divergem, ou seja, o método é incondicionalmente estável.
| |
|
| |
|
| | Mostra-se, portanto, que a razão entre os coeficientes da série de Fourier nunca diverge, ou seja, o método é incondicionalmente estável. |
|
| |
|
| =Referências= | | =Referências= |
Grupo: André Luis Della Valentina, Lucas dos Santos Assmann, Vinícius Bayne Müller
Introdução
A equação de Dirac descreve uma partícula relativística de spin , como o elétron, com estrutura análoga a da equação de Schrödinger. Ela surgiu inicialmente como tentativa de explicar discrepâncias entre experimentos e teoria para o espectro do átomo de hidrogênio, possibilitando correções para o cálculo da energia do elétron em diferentes níveis (as chamadas correções de estrutura fina). Além disso, por meio dela foi possível prever a existência de antimatéria: descrevendo o elétron, ela também descreve o pósitron.
A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de primeira ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de segunda ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.
Assim como a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:
onde, como anteriormente, os autovalores de correspondem aos valores possíveis de energia que o sistema pode assumir.
A mudança com relação à Mecânica Quântica não relativística acontece quando consideramos a energia relativística da partícula:
Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.
Diferentemente da equação de Schrödinger, aqui não representa apenas uma função de onda, mas sim um conjunto de quatro delas. Usando a notação
,
as componentes de representam as funções de onda associadas ao elétron e ao pósitron: () representa a função de onda do elétron com spin up (down), e () representa a função de onda do pósitron com spin up (down). O objeto é chamado de spinor.
Dedução da equação de Dirac em duas dimensões
Consideraremos neste trabalho a equação de Dirac em duas dimensões, e . A escolha dessas coordenadas se dá pela conveniência do acoplamento das EDPs: nesse caso, as quatro equações acopladas passam a ser acopladas duas a duas, facilitando o estudo do sistema.
Construção do Hamiltoniano completo
Consideremos uma partícula sob ação de um potencial (onde ), que afeta a energia potencial da partícula, e de um potencial "escalar" , que afeta a massa de repouso da mesma. Seguindo uma das propostas possíveis para o Hamiltoniano, temos
onde ; e são matrizes 4x4 adimensionais e é o vetor momento linear da partícula.
Pode-se mostrar que e devem satisfazer certos vínculos, limitando as escolhas possíveis para essas matrizes. A escolha mais simples e usualmente adotada consiste em tomar
Sendo , podemos escrever o produto escalar como
Portanto, em notação matricial o Hamiltoniano pode ser escrito como
Unidades naturais e redução para duas dimensões
A fim de simplificar o formalismo, adotamos as chamadas "unidades naturais", onde . Note que isso equivale a reescalar as quantidades físicas do problema por um fator adequado. Ao fazer , também assumimos que a partícula está no limite relativístico.
Além disso, queremos estudar o problema em duas dimensões. Observamos que ; logo, . Portanto, temos o Hamiltoniano simplificado
Forma explícita final
Retornando ao problema original, queremos resolver
Novamente utilizando a notação matricial, obtemos
Realizando a multiplicação matricial, pode-se ver que se obtém dois sistemas acoplados: com e com . Escolhendo o sistema de com :
Simplificando e isolando a derivada temporal, obtemos por fim
Discretização
A equação de Dirac 1D pode ser escrita, na forma matricial, como:
Onde e é matriz identidade de dimensão 2.\\
Para discretizar uma equação diferencial parcial como essa, é necessário discretizar o espaço e o tempo. Convenciona-se como um passo finito de tempo e como um passo finito no espaço, de tal forma que , onde são números inteiros. Define-se a notação e também . Discretiza-se as derivadas parciais explicitamente com uma expansão em série de taylor da própria função:
Considerando uma derivada discretizada e truncando na primeira ordem:
O processo é completamente análogo para a derivada espacial, porém para facilitar a aplicação do método mantém-se o espaço centrado em , em outras palavras faz-se uma expansão em torno de , obtendo:
Com isso, obtém-se uma equação para um método explícito no tempo da equação de Dirac 1D.
Pode-se também desenvolver um método implícito no tempo fazendo a expansão de em torno de , obtendo:
Ao aplicar esta aproximação na equação discretizada basta dar um passo a frente em todos os elementos, obtendo um método implícito no tempo, já que há dependência com .
Método de Crank-Nicholson
O método de Crank-Nicholson(CN) consiste em uma média entre um método explícito e outro implícito no espaço. Utilizará-se a notação para representar justamente a média entre ambos os métodos, ou seja:
Define-se a notação:
Dessa maneira, enuncia-se o método CN para a equação de Dirac 1D como:
Onde são as discretizações explícitas das derivadas.
Para que seja possível aplicar e estudar o método é necessário passar da notação matricial para escalar:
Isolando cada tempo em um lado da igualdade:
Abrindo as matrizes e , e operando-as sobre o vetor na equação tem-se:
Pode-se realizar as operações matriciais e escrever duas equações escalares. Para facilitar notação utilizará-se e :
Tem-se então um número de equações onde é o número de elementos do espaço discretizado. Portanto o primeiro termo das duas equações gera uma matriz diagonal pois multiplica os termos espaciais dependentes de , já o segundo termo gera uma matriz tridiagonal com diagonal principal nula. Nota-se que os primeiros termos dos dois lados da igualdade são um o conjugado do outro, define-se, portanto, e .
Considerando que o potencial V é só função da posição, escreve-se o método como:
Onde:
Por fim, pode-se escrever o método resolvendo o sistema:
Onde , , , , e .
Com isso, condições iniciais e de contorno bem estabelecidas, já é possível aplicar o método, dado que todas essas matrizes dependem somente dos parâmetros do sistema.
Estabilidade Crank-Nicolson
Utilizar-se-á o método de von Neumann para analisar a estabilidade do método de Crank-Nicolson para a equação de Dirac unidimensional. Para tanto, supõe-se que a função pode ser dada pela série de Fourier
Devido à independência linear de cada termo do somatório, ao substituir na equação do método haverá uma equação para cada ente do somatório. Se , então pode-se dizer que o método estável, já que dessa forma garante-se uma não divergência.
Aplica-se um termo geral da série de índice no método CN para a equação de Dirac 1D:
Divide-se tudo por e isola-se :
Nota-se que os termos que multiplicam o fator são o conjugado um do outro. Define-se ; dessa maneira:
,
onde é sempre diferente de zero, visto que a parte real é dada por uma matriz identidade constante.
Mostra-se, portanto, que a razão entre os coeficientes da série de Fourier nunca diverge, ou seja, o método é incondicionalmente estável.
Referências
- The quantum theory of the electron. Proceedings of the Royal Society of London A, v. 117, n. 778, p. 610–624, fev. 1928.
- SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
- BAO, W. et al. Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, v. 71, n. 3, p. 1094–1134, jun. 2017.
- SOFF, G. et al. Solution of the Dirac Equation for Scalar Potentials and its Implications in Atomic Physics. Zeitschrift für Naturforschung A, v. 28, n. 9, p. 1389–1396, 1 set. 1973.
- THALLER, B. The Dirac equation. Berlin: Springer, 2010.